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Cylindrical momentum shell
The momentum theory of cylindrical shell should be applied if the
assumptions of the membrane stress state in the shell are disturbed; this occurs
under the following conditions (see the figure below):

1. points of the middle surface are joined with another body (radial
displacements or/and rotations are constrained, i.e.),
2. stepwise change in the shell stiffness (i.e. in its wall thickness, radius or

modulus of elasticity of the material),
3. discontinuity in loads (line force, line moment) or their derivatives (change in

the pressure distribution — see fig. below).

Stepwise changes in the slope or curvature of the middle surface cannot occur at
a cylindrical shell.
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If the conditions of the membrane shell theory are disturbed, the factor of safety
may decrease by a factor ranging from 1 to 2 (in comparison with that calculated
from the membrane shell theory).



Momentum shell is a thin-wall body not meeting the assumptions of the
membrane stress state. Cylindrical shell is a special case of axisymmetric shell,
therefore it must meet the conditions of axisymmetry in geometry, material
properties, supports and loads, otherwise the displacements, strains and stresses
cannot be axisymmetric. Radial displacement u represents a major deformation
parameter, axial displacement w is an independent deformation parameter as
well; v=tgo=du/dz is introduced as a minor (slave) deformation parameter and
represents the angle of rotation of a tangent line to the meridian caused by the
shell deformation.

Stress tensor:

e circumferential stress o; represents the highest principal stress in most
cases,

e at a cylinder the meridian line is parallel to the z axis, therefore the meridian
stress can be denoted as axial stress o,

e radial stress o, is negligible (in contrast to a thick wall body) in consequence
of the small shell thickness — similar to the membrane shell theory,

e shear stress t; is non-zero and must be taken into consideration in the
equations of equilibrium; however, similarly to the bended long slender
beams and Kirchhoff’s plates, its magnitude is not significant for evaluation
of failure risk.

The stress tensor can be therefore written in the following matrix form:
0 0 r,~0

T,=| 0 o 0
7,~0 O o,



Only axisymmetric (i.e. distributed) loads are acceptable. They can be induced
either by pressure p, of the fluid medium inside or outside the shell or by
fixation of the shell (typically when a flange is fixed to the shell). In this way
not only distributed forces (along the circumference) but also distributed
moments can be induced; this occurs typically if the shell is supported (in
vertical position) by means of the flange. If this flange is fixed to the shell by
interference only, then (in addition to the radial contact pressure p, acting at the
interface) also axial component p, of the pressure can be induced by friction
equilibrating gravitational forces. In the other cases the axial component of
pressure p; is negligible.

Stress distribution in an element of cylindrical momentum shell




Force and couple resultants according the figure can be introduced
using the following equations of static equivalence:

" n
/Z 2
——a n, = jazdx [N /mm]
Nt : o rd _E
i : | merididn 2
dz ‘\f t 7, ‘/‘m’t g (1a)
| /r {\n’t n, = fatdx [N /mm]
3
dz E
2
t =t= Irrzdx [N /mm] (1b)
3
: z
2
m, = J.XO'ZdX m, = _[Xatdx [Nmm/mm] (c)

|
N

Relations between the distributed resultants in opposite sections are as

follows:

n=n +dn, ; n/ =n,

t/ =t _+dt, =t =t+dt (subscripts are not necessary and thus not used below)

/ ) I _
m, =m, +dm, ; m, =m,

Three applicable equations can then be obtained on the basis of static

equilibrium of the element:
dn (2a)
Y Fi—2+p,=0
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strain-displacement equations
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Constitutive equations can be applied for plane stress conditions in the form:

E
oF =1_—2[52+/15t] “a)
E
o, = > e, + pe, | (4b)
By substituting constitutive (4) and strain-displacement (3) equations into
equations (1) we can obtain after some manipulations:
Eh® d°u d*u (52)
m, =- Va2 = Bz
12(1— 4% ) dz dz
d?u (5b)
m, =—uB— = um
t dz? ‘
In these equations the bending stiffness B of the shell was introduced
3
B = En (6)

12(1— 1?)



By substituting eq. (5a) into (2c) we obtain for shear force (per unit length) t:

d°u
t:—BF (6a)

This result will be substituted into eq. (2b).

If we substitute strain-displacement eq. (3b) into Hooke’s law eqs.(4a) and (4b)
and subsequently into (1a), we obtain the following two formulas:

n =B [d_vu 2} =N {L d_vq
Y o1-4%| dz Al T 1—g?|r Haz

After elimination of dw/dz from these two equations we obtain the formula for n;
depending only on the radial component of displacement u:

u
n, = wn, + Eh— (6b)
r
By substituting this result into eq. (2b) we obtain the following 4" order
differential equation:

Hapu=f(p,.p)
d“u 1 H
F + 4,B4u = E[ pr _?(Co _I pZ(Z)dZ)i|, (7)

where eq. (2a) was also applied for n,and the parameter  was introduced as
follows:

p=y 8t o] ®

The solution to the homogeneous part of equation (7) is known in the following
form

u,,,=e " (c,sin Sz +c,cos fz)+e”(c,sin Sz +c, cos fz) ©)

For this 4" order differential equation, 4 boundary conditions are required;
they are formulated typically for radial displacements u and their derivatives v at
both ends of the shell. As the influence of the constrained sections decreases
steeply (exponentially) with the axial distance from them and both solutions
tend to membrane stresses, all the constrained sections of the shell can be solved
separately if their distance is sufficiently large.



In this case only one section of the shell is constrained in its radial
displacements and integration constants cs and csequal zero. The impact of the
constrained section is negligible when the momentum stress becomes lower than
2% of membrane stress; it can be shown that this distance is approximately
lo=4/# and behind this value the membrane shell theory is valid. Consequently, if
the distance between two locations of membrane state violation is higher than
2lo, they do not influence each other (so called ,,long shell*), and only two
boundary conditions (both for z=0) are needed.

Thus the first step in application of momentum shell theory is decision whether
the criterion of long shell is met; for this purpose, we use the formula:

4 (10a)

For steels (u=0,3) this formula can be simplified into the form:

,=3Jrh (100)

As the resulting |, is typically smaller than the radius, 2l, is smaller than the
shell diameter.

In most practical applications, another simplification is possible. If the radial
component of pressure is constant along the solved part of the shell and we can
neglect the axial pressure component p,, then it holds (from eq. (2a)) n, = const.
and the differential equation has the following simplified form:

d*u .1 u
+44%u==|p,—=n (11)
rHAfu=—p -,
with the solution consisting of its homogeneous and particular solutions
u= uhom + upart

U,,, =€ **(c,sinfz+c,cos B2)

r? L
upartza[pr _?nzj|
r 7
u:eﬂz(qsinﬁz+czcosﬂz)+a[p ——nz} (12)
r

which represents an applicable simplification of the more general equation
below valid for a long shell when p, =0 (‘and thus p, =p ):

u =e*(c sin Bz +c,cos pz)+e”(c,sin fz +c, COSﬂZ)-F-‘:pr (c —'[p )}



Boundary conditions can be formulated on the basis of constraints of
deformation parameters (displacement and angle of rotation) and/or external
loads (distributed line forces or couples). Their formulation can be as follows:

Pin support: for z=0 it holds u=0.

-~ =0.
dz

Fixed support: for z=0 it holds u=0, v

Free edge (not fixed and unloaded): for z=0 (or z=I) it holds

2 3
u_o gl
dz ! dz !
For an edge loaded by a distributed force or couple, similar boundary conditions
with non-zero values of these quantities can be formulated. This external loads
are taken as positive if they bend the shell inwards.

m, =—-B

Note: If the axial component of pressure is not negligible, then the integration
constant co in eg. (7) equals the magnitude of axial distributed force n;, in the
critical location (for z=0).



Procedure of solution to a direct problem:

1.

On the basis of distance | between the neighbouring violations of the
membrane stress state, we decide whether the shell can be solved as a
,long shell“ (if 1>2lp). In this case the origin of the coordinate system
(z=0) is located in the centre of the section where membrane assumptions
are violated.

We create free body diagram of a finite element of the shell and express
explicitly the axial distributed load n, from its equation of static
equilibrium of forces acting in z direction.

We substitute n, into eq. (12) and formulate two boundary conditions
(both in the critical location, i.e. for z=0). In addition to radial
displacement u, these boundary conditions can be formulated for its
derivatives (v=du/dz; m;; t).

We determine the integration constants c¢; and c; in eq. (12); thus the
equation for displacements is obtained.

We calculate the distributed loads m,, m;, n; as functions of z coordinate
and find their maximum values (mostly in z=0). Here we apply egs. (5a),
(5b) for moments; the distributed force in tangential direction can be
calculated using

u
n, = un, +Eh .
Extreme stresses in the dangerous points are given by the following
formulas

o, :&i6mt and © :&i6mz

™ h  h® M h o h® o
where members with n and m relate to the membrane and bending
components of stresses, respectively.

As the third principal stress o, equals zero, the reduced Tresca stress
(valid for a ductile material) equals to the largest absolute value of the
above extreme stresses. This value is then used for calculation of the
factor of safety. The same formulas hold also for brittle materials, but for
negative membrane stresses (they occur under outer pressure) the sign of
the resulting stresses must be taken into consideration due to different
ultimate values in tension and compression.



