
 
 

Cylindrical momentum shell  
The momentum theory of cylindrical shell should be applied if the 

assumptions of the membrane stress state in the shell are disturbed; this occurs 

under the following conditions (see the figure below):  

 

1. points of the middle surface are joined with another body (radial 

displacements or/and rotations are constrained, i.e.), 

2. stepwise change in the shell stiffness (i.e. in its wall thickness, radius or 

modulus of elasticity of the material), 

3. discontinuity in loads (line force, line moment) or their derivatives (change in 

the pressure distribution – see fig. below). 

 

Stepwise changes in the slope or curvature of the middle surface cannot occur at 

a cylindrical shell. 

 

 
 

If the conditions of the membrane shell theory are disturbed, the factor of safety 

may decrease by a factor ranging from 1 to 2 (in comparison with that calculated 

from the membrane shell theory). 



Momentum shell is a thin-wall body not meeting the assumptions of the 

membrane stress state. Cylindrical shell is a special case of axisymmetric shell, 

therefore it must meet the conditions of axisymmetry in geometry, material 

properties, supports and loads, otherwise the displacements, strains and stresses 

cannot be axisymmetric. Radial displacement u represents a major deformation 

parameter, axial displacement w is an independent deformation parameter as 

well; υ=tgυ=du/dz is introduced as a minor (slave) deformation parameter and 

represents the angle of rotation of a tangent line to the meridian caused by the 

shell deformation.  

  

Stress tensor: 

 circumferential stress σt represents the highest principal stress in most 

cases, 

 at a cylinder the meridian line is parallel to the z axis, therefore the meridian 

stress can be denoted as axial stress σz, 

 radial stress σr is negligible (in contrast to a thick wall body) in consequence 

of the small shell thickness – similar to the membrane shell theory, 

 shear stress τrz is non-zero and must be taken into consideration in the 

equations of equilibrium; however, similarly to the bended long slender 

beams and Kirchhoff’s plates, its magnitude is not significant for evaluation 

of failure risk.   

 

The stress tensor can be therefore written in the following matrix form: 
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Only axisymmetric (i.e. distributed) loads are acceptable. They can be induced 

either by pressure pr of the fluid medium inside or outside the shell or by 

fixation of the shell (typically when a flange is fixed to the shell). In this way 

not only distributed forces (along the circumference) but also distributed 

moments can be induced; this occurs typically if the shell is supported (in 

vertical position) by means of the flange. If this flange is fixed to the shell by 

interference only, then (in addition to the radial contact pressure pr acting at the 

interface) also axial component pz of the pressure can be induced by friction 

equilibrating gravitational forces. In the other cases the axial component of 

pressure pz is negligible. 

 

Stress distribution in an element of cylindrical momentum shell 

 

 
 



Force and couple resultants according the figure can be introduced 

using the following equations of static equivalence: 
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Relations between the distributed resultants in opposite sections are as 

follows: 
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Three applicable equations can then be obtained on the basis of static 

equilibrium of the element: 
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strain-displacement   equations 
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Constitutive equations can be applied for plane stress conditions in the form: 
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By substituting constitutive (4) and strain-displacement (3) equations into 

equations (1) we can obtain after some manipulations:   
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In these equations the bending stiffness B of the shell was introduced  
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By substituting eq. (5a) into (2c) we obtain for shear force (per unit length) t: 
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This result will be substituted into eq. (2b). 

 

If we substitute strain-displacement eq. (3b) into Hooke’s law eqs.(4a) and (4b) 

and subsequently into (1a), we obtain the following two formulas: 
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After elimination of dw/dz from these two equations we obtain the formula for nt 

depending only on the radial component of displacement u:   
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By substituting this result into eq. (2b) we obtain the following 4th order 

differential equation: 
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where eq. (2a) was also applied for nz and the parameter β was introduced as 

follows: 
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The solution to the homogeneous part of equation (7) is known in the following 

form 
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For this 4th order differential equation, 4 boundary conditions are required; 

they are formulated typically for radial displacements u and their derivatives υ at 

both ends of the shell. As the influence of the constrained sections decreases 

steeply (exponentially) with the axial distance from them and both solutions 

tend to membrane stresses, all the constrained sections of the shell can be solved 

separately if their distance is sufficiently large.  
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In this case only one section of the shell is constrained in its radial 

displacements and integration constants c3 and c4 equal zero. The impact of the 

constrained section is negligible when the momentum stress becomes lower than 

2% of membrane stress; it can be shown that this distance is approximately 

l0=4/β and behind this value the membrane shell theory is valid. Consequently, if 

the distance between two locations of membrane state violation is higher than 

2l0, they do not influence each other (so called „long shell“), and only two 

boundary conditions (both for z=0) are needed.  

Thus the first step in application of momentum shell theory is decision whether 

the criterion of long shell is met; for this purpose, we use the formula: 
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For steels (μ=0,3) this formula can be simplified into the form: 

 

rhl 30   

As the resulting lo is typically smaller than the radius, 2lo is smaller than the 

shell diameter.  

In most practical applications, another simplification is possible. If the radial 

component of pressure is constant along the solved part of the shell and we can 

neglect the axial pressure component pz, then it holds (from eq. (2a)) nz = const. 

and the differential equation has the following simplified form: 
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with the solution consisting of its homogeneous and particular solutions 

partuuu  hom  
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which represents an applicable simplification of the more general equation 

below valid for a long shell when pz =0 ( and thus pr =p ): 
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Boundary conditions can be formulated on the basis of constraints of 

deformation parameters (displacement and angle of rotation) and/or external 

loads (distributed line forces or couples). Their formulation can be as follows: 

 

Pin support: for z=0 it holds    u = 0. 

 

Fixed support: for z=0 it holds   u=0, 0
dz

du
 .  

 

Free edge (not fixed and unloaded): for z=0 (or z=l) it holds  
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For an edge loaded by a distributed force or couple, similar boundary conditions 

with non-zero values of these quantities can be formulated. This external loads 

are taken as positive if they bend the shell inwards.  

 

Note: If the axial component of pressure is not negligible, then the integration 

constant c0 in eq. (7) equals the magnitude of axial distributed force nz in the 

critical location (for z=0). 



Procedure of solution to a direct problem: 
 

1. On the basis of distance l between the neighbouring violations of the 

membrane stress state, we decide whether the shell can be solved as a 

„long shell“ (if l>2l0). In this case the origin of the coordinate system 

(z=0) is located in the centre of the section where membrane assumptions 

are violated. 

 

2. We create free body diagram of a finite element of the shell and express 

explicitly the axial distributed load nz from its equation of static 

equilibrium of forces acting in z direction.  

 

3. We substitute nz into eq. (12) and formulate two boundary conditions 

(both in the critical location, i.e. for z=0). In addition to radial 

displacement u, these boundary conditions can be formulated for its 

derivatives (υ=du/dz; mz; t). 

 

4. We determine the integration constants c1 and c2 in eq. (12); thus the 

equation for displacements is obtained. 

 

5. We calculate the distributed loads mz, mt, nt as functions of z coordinate 

and find their maximum values (mostly in z=0). Here we apply eqs. (5a), 

(5b) for moments; the distributed force in tangential direction can be 

calculated using  
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6. Extreme stresses in the dangerous points are given by the following 

formulas 
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where members with n and m relate to the membrane and bending 

components of stresses, respectively. 

 

7. As the third principal stress σr equals zero, the reduced Tresca stress 

(valid for a ductile material) equals to the largest absolute value of the 

above extreme stresses. This value is then used for calculation of the 

factor of safety. The same formulas hold also for brittle materials, but for 

negative membrane stresses (they occur under outer pressure) the sign of 

the resulting stresses must be taken into consideration due to different 

ultimate values in tension and compression. 

 


