
Finite element 

method

Among the up-to-date methods of stress state analysis, finite element

method (abbreviated as FEM below, or often as FEA for analyses as well)

dominates clearly nowadays; it is used also in other fields of engineering

analyses (heat transfer, fluid flow, electric and magnetic fields, etc.).

In mechanics, the FEM enables us to solve the following types of problems:

• stress-strain analysis under static, cyclic or dynamic (including impact)

loading, incl. various non-linear problems;

• natural as well as forced vibrations (eigenvalues of frequencies), with or 

without damping;

• contact problems (contact pressure distribution);

• stability problems (buckling of structures);

• stationary or non-stationary heat transfer and evaluation of consequential

temperature stresses (incl. residual stresses), including those induced by 

phase transformation.



Functional
Fundamentals of FEM differ on principle from the analytical methods of

stress-strain analysis. While analytical methods of stress-strain analysis are

based on the differential and integral calculus, FEM is based on the

calculus of variations which is generally not well known; it is based on

seeking for minimum of a functional.

Explanation of the basis of the concept – analogy with functions:

• Function - is a mapping between two sets of numbers, it is mathematical 

term for a rule which enables us to assign unambiguously some numerical 

value (from the image of mapping) to an input numerical value (from the 

domain of mapping).

• Functional - is a mapping from a set of functions to a set of numbers. It is 

a rule which enables us to assign unambiguously some numerical value to a 

function (on the domain of the function or on its part). Definite integral is

example of such a functional.



Principle of minimum of the quadratic functional

Among all the allowable displacements (i.e. those which meet geometric and

physical equations of the problem and its boundary conditions), only those

displacements can come into existence between two close loading states

(change of displacement by variation δu) which minimize the quadratic

functional ΠL. This functional (called Lagrange potential) represents the

total potential energy of the body, and the corresponding displacements,

stresses and strains minimizing its value represent the elasticity functions we

are seeking for.

This principle is called Lagrange variation principle.

Lagrange potential ΠL can be written as follows:

ΠL = W – P

where W - total strain energy of the body

P – total potential energy of external loads



Basic terms of FEM
• Finite element – a subregion of the solved body with a simple geometry.

• Node – a point in which the numerical values of the unknown deformation parameters are 
calculated.

• Base function – a function describing the distribution of degrees of freedom (DOF), i.e. 
deformation parameters (typically displacements)  throughout the element (between its nodes).

• Shape function – a function describing the distribution of strains throughout the element, it
represents a derivative of the base function.

• Discretization – transformation of a continuous problem to a solution of a finite number of
discontinuous (discrete) numerical values.

• Mesh density – density of elements (inverse to their size) which influences the accuracy of the
solution and its computer time consumption.

• Matrixes (they are created by summarization of contributions of the individual elements)

– of displacements

– of stiffness

– of base functions

• Convergence – the basic property of the method, meaning the solution tends to the real
(continuous) solution when the mesh (discretization) density increases (element size decreases).

• Percentual energy error – assessment of total inaccuracy of the solution, it represents a 
difference between the calculated stress values and their values smoothed by postprocessing tools
used for their graphical representation, when transformed into difference in strain energies. 

• Isoparametric element – element with the same order of the polynoms used in description of
both geometry and base functions.



FEA of the stress concentration in a notch
(bar under tension, nominal stress in the shoulder is 1 MPa)



Stress distribution 
in the dangerous cross section of the notch 



Overview of basic types of finite elements

They can be distinguished from the point of view of the
assumptions the element is based on (bar assumptions,
axisymmetry, Kirchhoff plates, membrane shells, etc.), or for
what family of problems the element is formulated.

• Three-dimensional elements (volume elements - bricks)

• Two-dimensional elements (plane stress, plain strain, 
axisymmetry)

• Bar-like (truss) elements (either for tension-compression only, 
or for flexion and torsion as well)

• Shell elements (with combination of in-plane and out-of-
plane) loads (wall and plate or shell) 

• Special elements (contact elements, crack elements, cohesive
elements, etc.)



Types of 3D elements

Type of element Representation

Deformation

parameters

(DOFs)

Tetrahedron

Pentahedron

Hexahedron

with 8 nodes

Hexahedron

with 20 nodes



Types of 1D elements

Type of element Representation

in 2D 

in 3D

Link (1D) element 

(strut, bar ─  

tension-compression

only)

Beam element (2D flexion only)

Frame  element 

(flexion + tension)

in 2D 

in 3D – with

torsion included

Deformation

parameters

(DOFs)



Types of 2D elements

Type of element Representation
Deformation

parameters

Linear triangular shell element 

Membrane shell elements

Quadratic triangular shell element 

Linear quadrilateral shell element 

Quadratic isoparametric quadrilateral

shell element 

Plate element 

General (momentum) shell elements

(linear - quadratic isoparametric)



Basic types of constitutive relations 

soluble in FEA

• linear elastic anisotropic ─ elastic parameters are direction dependent
(monocrystals, wood, fibre composites or multilayer materials),

• elastic-plastic (steel above the yield stress) with different types of
behaviour above the yield stress (perfect elastic-plastic materials, various
types of hardening), 

• non-linear elastic ─ deformations are reversible, but non-linearly related
to the stress (rubber and other elastomers, soft biological tissues), 

– hyperelastic (showing elastic strain on the order of 101 – 102percents 
and thus being always non-linear), 

• viscoelastic ─ deformation is recoverable but time-dependent, i.e. rather
than instantaneously occuring with some transition time when the material
is out of equilibrium; the material shows creep, stress relaxation and 
hysteresis (plastics, pure alluminium, steel above 400°C) , 

• viscoplastic ─ plastic (permanent) deformation is time-dependent
(plasticity under high temperatures)

etc.



Examples of non-linear problems:

a FE mesh in a plastic guard of a pressure bottle valve



Distribution of Mises stresses in a plastic safety guard after impact, 

grey colour shows regions where yield stress Re=54MPa was exceeded.)



Assembly with a steel shock absorber after impact test
(total assembly with bottle and plastic guard in the video)



Steel shock absorber
original welded design under simulated impact test



Steel shock absorber

new design with controlled plastic deformation
(details in pdf file)



Comparison of different solutions of steel shock absorbers
The area below the curve corresponds to the absorbed deformation energy.
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