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Fatigue failure 
is one of the so called cumulative limit states. In opposite to instantaneous limit states, the cumulative ones 
depend not only on the instantaneous loading (stress-strain) state of the body in question but on all its 

loading history. During the body operation and loading, irreversible changes in the material occur, as well as 

accumulation of damage of the body. Outer influencing factors, like temperature, surface quality, chemical 
effect of the surrounding medium, energy fields, etc. play a significant role in origination of the cumulative 

limit states. 

Cumulative failures (limit states) can be systemized as follows: 
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Stages of the fatigue process from the microscopic and macroscopic point of view 

 
 

 

Classical approaches (Wöhler) do not deal with the initiation, existence or propagation of a crack but only 
with fatigue failure (fracture) of the body, which causes termination of the body lifetime. Behaviour of an 

existing crack and prediction of its propagation is described by methods of fracture mechanics. 
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Examples of fatigue fractures under tension 
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Fatigue failure occurs under variable stresses and strains, existing mostly under loads varying in time (but it 

can occur sometimes under steady or monotonically increasing loads – vibrations caused by velocity of the 

surrounding medium or bending of rotating beams). It is hereditary (depends on the loading history) in 
consequence of accumulation of damage caused by individual loading cycles. 

 

The stresses and strains varying in time can be: 
 

 deterministic 

 periodic 

 harmonic 

 non-harmonic 

 non-periodic 

 stochastic 

 stationary 

 non-stationary 

 

 

 

 
 

Shape and frequency of the cycles do not mostly influence the fatigue damage significantly. In 
computational evaluation of fatigue, the order of loading cycles is often not taken into account as well. 
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Basic parameters of a stress cycle: 

Mean (midrange) stress: σm 

Stress amplitude:   σa 

Stress range:    a 2  

Minimum stress:   amn   min  

Maximum stress:   amh   max  

Stress ratio  

(coefficient of asymmetry):   maxmin //   hnR  

Period of cycle:    T[s] 

  Frequency:    f = 1/T 
 

Basic types of cycles and their asymmetry coefficients: 

 
1. Fluctuating in 

compression 

2. Repeated (pulsating) in 
compression 

3. Asymmetrical reversed 

4. Completely reversed 
(symmetric) 

5. Asymmetrical reversed 

6. Repeated (pulsating) in tension 
7. Fluctuating in tension 
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Fatigue characteristics of structural members do not depend only on material (here much more on 

its crystalline structure) but also on their: 

 shape including stress concentrations (notches), 

 size and non-homogeneity of stress state, 

 heat and mechanical treatment, 

 surface quality and surface treatment, 

 surrounding conditions (temperature, corrosion accelerated by salt water...). 
 

 Consequently there are two types of fatigue characteristics: 

 component specific, 

 material specific – basic fatigue characteristics. 
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Basic fatigue characteristics: 
 

 Cyclic stress-strain curve σ – ε , described by 
Ramberg-Osgood approximative relation                     
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can show cyclic strain hardening or softening, i.e. 
stiffening or softening against the static curve σ-ε.  

 

Cyclic strain hardening is typical for low strength 

carbon steels with         4,1
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Cyclic strain softening is typical for high strength steels and alloys with 2,1
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  S-N curve (Wöhler curve) is dependence of number of cycles until fracture1 on the stress amplitude 

of a symmetric loading cycle (σm=0) – applicable for high-cycle fatigue (HCF), it defines also the 

endurance limit σC if it exists (it is not the case e.g. for aluminium); the fatigue strength (for finite life 
under high cycle fatigue) can be described e.g. by the equation: 
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According EU conventions      According US conventions 

 

 
 

Specific parameters of the curve are valid always for a certain probability of failure and confidence. 

                                                
1 The definition of fatigue failure is conventional, alternatively to fatigue fracture it can be given also by initiation of a crack of a defined size or 

by a defined decrease of stiffness of the specimen during the fatigue test, as consequence of crack propagation. 
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 Manson-Coffin curve2 – applicable for low-cycle fatigue (LCF), depicted in logarithmic coordinates 

(logεa-logN); its mathematical description is based on the elastic and plastic components of strain 

amplitude  
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In the formula of Manson-Coffin curve, the 

meaning of symbols is as follows: 

 
Nf – number of cycles to failure 

ε’f – fatigue ductility coefficient 

σ’f – fatigue strength coefficient 
c – fatigue ductility exponent 

b – fatigue strength exponent 

 
 

 

 
 

The boundary between HCF and LCF is conventional, from 105 (in EU countries) down to 103 (in USA) 

cycles till failure.  
                                                
2 The dependency of total strain εat on the number of cycles till failure Nf is mostly called Manson-Coffin curve in literature, although these 

authors have proposed this dependence for the plastic strain component only and it was Basquin and Morrow who extended it into the form 

presented here. 

Number of reversals to failure, 2Nf 

(3) 
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Basic fatigue characteristics are determined for uniaxial stress state (in tension or bending, eventually in 

torsion – shear stress state) and for symmetric (completely reversed) cycles (σm = 0, or R = -1).   

 
For asymmetric cycles (σm > 0) the endurance limit (or fatigue strength) is determined from Smith or 

Haigh diagrams, representing additional fatigue characteristics.  

 
Smith diagram     Haigh diagram 
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Simplified diagrams (Serensen approach with slope of limit lines as function of strength of material) 
 

Smith diagram     Haigh diagram 

 
Angles γS and γH used in this simplified diagrams can be calculated from the following relations:  
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where constants ψ can be taken from the table below:  
  

 

 

 

Note: Smith and Haigh diagrams, as well as their simplified forms, can be created also for shear stresses; subscripts σ and τ 

relate here to normal and shear components of stress, respectively. 

Rm [MPa] 350-520 520-700 700-1000 1000-1200 1200-1400 

ψ σ 0 0,05 0,1 0,2 0,25 

ψ τ 0 0 0,05 0,1 0,15 

 

Re 

Re 

(4) 
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Other simplifications of Haigh diagram 
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Mathematical description of boundary lines (limit envelopes) 
related to limit envelopes for infinite life and concept of local stresses 
(can be also formulated similarly for finite life and concept of nominal stresses). 

 

Soderberg  (linear) –suitable for body without notches, otherwise very conservative, because it excludes 

plastic deformations totally.          m
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The other criteria should be applied in combination with Langer line to avoid plastic deformations (LCF). 
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Serensen3     m
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         or the simplified formula       mCa    

Accuracy and consequently applicability of the individual criteria depends on the type of material and can be 

assessed only by their statistical comparison with experimental results.

                                                
3 Approach presented in the Czech textbook Ondráček, Vrbka, Janíček, Burša: Pružnost a pevnost II. 
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Simplified Haigh diagram (Goodman approximation) extended for compressive region (σm < 0) 

 
Note: This simplification does not take negative (compressive) mean stress into consideration until the yield 

stress is reached. In fact, also negative mean stresses can influence (increase, in opposite to tensile mean 
stresses, see the dashed line) the endurance limit; the approaches taking this into account are, however, out 

of scope of this course. 
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Computational assessment of fatigue failure 
Overview of concepts for assessment of non-welded structures 

 

1. Concept of nominal stresses 

 one-stage loading (constant stress amplitude as well as midrange stress) 

  infinite life 

 uniaxial stress state 

 biaxial stress state 

 finite life 

 multi-stage deterministic loading (several various types of stress cycles) 

 random (stochastic) loading (variable stress amplitude) under uniaxial stress state 

 

2. Concepts of local stresses and strains 

 concept of local elastic stresses  

 concepts of local elastic-plastic stresses and strains – for finite life in the LCF region  

 Neuber concept 

 concept of equivalent energy (Molski – Glinka) 

 many other concepts 
 

3. Concepts of fracture mechanics 

 concepts describing a stable crack propagation 



  Strength of materials II- Fatigue failure 

 

Concept of nominal stresses – for infinite life 
 

The procedure described here holds for a simple case – uniaxial stress state, infinite life and completely 

reversed (symmetric) cycle. For asymmetric cycle Haigh diagram is to be applied.  

Criterion of fatigue failure is     
*

, Cnoma   ,         

and consequently the factor of safety  
noma

C
Ck

,

*




              

or             
nomh

hC
Ck

,

*




   for a repeated cycle,    where 

a,nom  – amplitude of nominal stress, 
*

C    – endurance limit of a notched part in a completely reversed cycle,  

nomh,  – maximum stress of the cycle, 
*

hC    – endurance limit of a notched part (maximum stress) in a repeated cycle. 

 

Both formulas for the factor of safety (calculated on the basis of either amplitudes or maximum stresses of 
the cycle) are equivalent in case of proportional loading and overloading process. For non-proportional 

loading process (mean stress is not proportional to the stress amplitude) they yield different results and 

consequently also different values of the factor of safety are recommended for both approaches.  
 

In our course the formula related to stress amplitude is preferred. 
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Determination of endurance limit 
Endurance limit can be determined either experimentally using the produced component part directly, or by 

recalculation from the basic endurance limit c   using e.g. relations with respective corrections factors: 
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In this concept the endurance limit is lowered by the notch factor β against a smooth specimen, so that it 

corresponds to the endurance limit determined experimentally with the real component part. The symbols: 
 

C  – basic endurance limit (for a smooth specimen without notch in tension-compression symmetric cycle) 

v  – size factor  
  – surface condition factor  

  – notch factor ( 1  ) 

Size factor 21.vvv  , thus it consists of two parts: 

1v  – size factor itself, decreases with increasing size of the evaluated body, 

2v  – factor representing non-homogeneity of stress in bending or torsion (increases with stress gradient in 

the body which is also size-dependent). 
 

Surface condition factor consists also of two parts η=η1.η2; here η1<1 represents impact of surface roughness 

and corrosive surrounding medium, while η2 >1 is  the impact of heat, chemical or mechanical surface 

treatment (surface hardening, nitridation, cementation, etc.). 
These factors can be assessed on the basis of empirical formulas or graphs presented in literature (e.g. 

Ondráček et al., pages 211-214). 

(5) 



  Strength of materials II- Fatigue failure 

 

Notch factor β represents a portion of the shape factor (stress concentration factor) α, which applies under 

repeated loading; it meets the limits 1 < β < α and can be determined in different ways: 

 

 using Heywood formula 
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where r is the notch radius [mm] and K for eq. (6b) can be found in Ondráček et al. at page 213. 
 

 

 According Neuber from the formula  
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In both approaches the parameter a (or a’) is determined on the basis of experiments.  
 

 

 

 Also the notch sensitivity factor q can be introduced by the following formula:  
1
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from which it holds    11   q    

    

(6a)   (6b) 
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If the notch sensitivity factor q is expressed from Neuber formula, we obtain (Shigley,eq. 7-33)   
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For some frequently applied materials the notch sensitivity was expressed graphically (see Shigley, fig. 7-20)  
  

 

 

 
Always it holds 1< β < α 

 

 
 

 

 
 

 
 

For steels the graph can be 

approximated by Neuber equation 
where a is substituted by (Shigley, eq. 7-34) 

 
2 5 2 9 3

m m m1,238 0,225 10 0,160 10 0,410 10a R R R             
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For asymmetric cycles (reversed, repeated, or fluctuating), Haigh diagram is to be applied. In most cases it 

is created for a specific component directly; the choice of its simplification depends chiefly on availability of 

experimental data for the given material4.  
 

Note: Haigh diagram can be used for component parts in both concepts of nominal stresses and of local 

elastic stresses. The most important difference is introduction of the notch factor either in calculation of 
stresses (concept of local elastic stresses) or in reduction of the endurance limit (concept of nominal 

stresses). This difference is distinguished by using different symbols ( C  or 
*

C ) for both quantities used 

alternatively in creation of the limit envelope in Haigh diagram. In assessment of infinite life, the following 

quantities can then be used as limit values: 
 

 
*

C … endurance limit of a notched part. This represents nominal stress (i.e. stress calculated using 

elementary formulas of simple theory of elasticity), it applies in the concept of nominal stresses. 
 

 C  … limit notch stress. This represents a limit stress value in the root of the notch in the part, under which 

fatigue failure occurs. It applies in the concept of local elastic stresses as presented later.  

 

  

                                                
4
 The diagrams are usually drawn for infinite life (as shown earlier) but they can be applied also for finite life in the HCF 

region. 
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For a non-proportional loading process represented 

by general (non-linear) loading and overloading 

trajectories in the figure, the factor of safety is 
defined as a ratio of lengths of the overloading 

trajectory (till failure represented by different points 

Mi in the figure) to the loading trajectory (till the 
operation point P).  

Under assumption of a proportional loading and 

overloading process (i.e. ratio of the amplitude and 
mean stress remains constant during the process, see 

the linear trajectory OPM1 in the figure), the above 

ratio of trajectories can be recalculated into the 
following formulas defining the factor of safety kc, 

depending on the applied approximation of the limit envelope. Using Serensen approximation we obtain: 
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where σae (τae) represents amplitude of an equivalent completely reversed cycle (i.e. for σm = 0, τm = 0) with 

the same factor of safety; if (ψσ.σm) is much lower than σa or the ratio CC  /*
 is close to 1, this equivalent 

stress amplitude can be assessed also using the following simplified formulas:  

amae       or          amae     

(7) 

(8) 
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For the concept of local elastic stresses, a similar approach is applicable only for a body without notches; 

depending on the applied simplification of Haigh diagram the following formulas for the amplitude σae of an 

equivalent completely reversed cycle can be obtained (for a proportional loading and overloading process):  
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Goodman:      
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The non-linear approximations of Haigh diagram disable application of the equivalent stress amplitude.  

 

For ASME criterion the factor of safety of a non-symmetric cycle can be expressed as follows: 
 

22

22

1
1









































e

m

C

a
e

m

C

a

R

k
R

kk













 

 

 



  Strength of materials II- Fatigue failure 

 

 

For Gerber (parabolic) criterion a simple explicit expression of the factor of safety is not more possible; the 

factor of safety k can be calculated by solving the following quadratic equation:  
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In case of non-proportional loading process (mean stress is not proportional to the stress amplitude, 

loading trajectory is curvilinear in Haigh diagram) the factor of safety cannot be calculated from the above 

formulas, it should be evaluated on the basis of loading and overloading trajectories in Haigh diagram:  

OP

OM
kC  , 

 
where  OM – length of loading and overloading trajectory from the origin to the limit point M, 

OP – length of loading trajectory from the origin to the operation point P. 

 
For some of the loading and overloading trajectories the resulting values of the factor of safety can be 

substantially different from those valid for the proportional loading process.  

 
If Smith diagram is applied to evaluate these non-proportional factors of safety, the resulting values differ 

from those evaluated on the basis of Haigh diagram. Therefore different values of factors of safety are 

recommended for them in practical applications. 

(9) 
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Safety under combined loading (biaxial state of stress) 

 
Under combined loading of bars (beams or shafts, with both normal and 

shear components of stresses being non-zero), calculation of the factor of 
safety is based on a graphical representation of the limit envelope in 

coordinates presented in the figure. The approach is based on assumption 

of the same frequency and phase of all the evaluated (completely reversed 
– symmetric) stress cycles. If it is not the case, the calculated factor of 

safety is more conservative (lower than in reality). 

For proportional loading process the factor of safety can be calculated 
separately for normal (kcσ) and shear (kcτ) stresses; on the basis of the 

graphical representation (equation (11) of the ellipse) the formula can be 

derived for the resulting factor of safety:  
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For non-proportional loading process (the ratio of normal and shear stress components varies during the 

loading process, the loading trajectory is curvilinear in the graph) the factor of safety cannot be calculated 

using the above formula; similarly to the approach applied in Haigh diagram, it should be determined from 
the graphical representation as a ratio of the lengths of overloading and loading trajectories. The approach 

can be applied also for non-symmetric cycles (then equivalent stress amplitude is used) or even for one stress 

component being constant (then yield stress is used for this component instead of endurance limit).  

(10) (11) 
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Algorithm of assessment of factor of safety in the concept of nominal stresses (valid for infinite life) 
 

1. Analysis of time history of inner resultants in the bar – N(t), T(t), Mo(t), Mk(t). 

2. Calculation of time history of stress components σ(t) and τ(t) in the dangerous points and determination 
of basic parameters of the stress cycles (σa, σm and τa, τm) for all the dangerous points. 

3. Determination of the endurance limits 
*

C , 
*

C  of the component part  and creation of the respective 

Haigh diagrams (if mean stresses σm, τm do not equal zero). 
4. Draw the operation point P into the diagram (with coordinates σaP, σmP, or τaP, τmP) and assess the 

loading and overloading trajectory. 

5. For a proportional loading and overloading process, the factors of safety kCσ, kCτ for normal and 
shear stresses can be calculated separately using formulas approximating Haigh diagram (e.g. eq. (7)).  

Then the resulting FOS  kC (under condition of proportionality between normal and shear 

components of stresses) can be calculated using formula   22
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6. For non-proportional loading trajectories (with a varying ratio between mean stress and stress 

amplitude and/or between normal and shear stresses) the FOS should be assessed on the basis of the 

corresponding graph (σm-σa, τm-τa, τa-σa); the limit values can be calculated as coordinates of points of 
intersection between the loading (or overloading) trajectory and the limit envelope. 

7. Conclusions based on the FOS value:  kC >1 –  infinite life;        kC < 1  – finite life. 

8. To reach infinite life, plastic deformations are not allowed (risk of LCF).  
If the stress amplitude is relatively small in comparison with midrange stress, 

maximum stress should be checked also using a plasticity criterion, because 

most simplifying approaches do not exclude plastic deformations.  
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Concept of local elastic stresses 
 

This concept is based on calculation of alternating stress (amplitude, event. mean stress) in the root of the 
notch in the assessed part under assumption of validity of Hooke’s law within all the range of loading. 

The amplitude of notch stress can represent two different values: 

 either the stress amplitude evaluated by a theoretical calculation  a,vr teor
 , which can be calculated 

- from the shape factor and amplitude of nominal stress   a,vr a,nomteor
     

- using finite element method (FEM)      a,vr a,MKPteor
   

 

 or an effective stress amplitude  a,vr ef
 , which characterizes the process of fatigue failure and can be 

evaluated 

- from the notch factor and amplitude of nominal stress     a,vr a,nomef
     

 

- using FEM and reduction to the notch sensitivity of the material       a,MKP
a,vr a,MKPef

Gn


 


    

  

Here the ratio G 1n



   represents a supporting influence of stress gradient and can be assessed for most 

steels on the basis of a relative stress gradient (see Shigley, Chapter 6, for details). 
 

Then fatigue failure occurs if it holds      a,vr Cef
    



  Strength of materials II- Fatigue failure 

 

Corrections of endurance limit for concept of local elastic stresses 
The corrected endurance limit of the component part under completely reversed cycle σC'    (for 

σm = 0) can be determined from the fatigue strength σCo obtained under experimental testing in 

bending1: 

 
 

where ka  =  surface factor      kb  =  size factor  

  kc  =  load factor      kd  =  temperature factor  

  ke  =  reliability factor      kf  =   factor for other influences 
    (considers dispersion of experiments) 

Main differences in comparison with concept of nominal stresses: 

1. Endurance limit is not reduced by the notch factor – it is included in stress calculation. 

2. Basic endurance limit is evaluated in flexion (not in tension-compression). 

3. Differences in correction factors (influence of temperature, reliability...). 

Mutual recalculation of endurance limits between both concepts:    .*/

CC   

        and recalculation of endurance limits between tension and bending            tensionCCoC k  ./     

                
kC-tension ─ load factor for tension in the local elastic stress concept, basic assessment may be kC-tension≈ 0,85 

It holds for symmetric (completely reversed) torsion:    CoCoCC k  59,0/   (otherwise similar to 
/

C ).   

1according Shigley, or Marin, J.: Mechanical Behavior of Engineering Materials. Englewood Cliffs, Prentice-Hall 1962.          

C a b c d e f Cok k k k k k   (12) 



  Strength of materials II- Fatigue failure 

 

Approaches for finite life in HCF region 

 
1a) Under constant stress amplitude and completely reversed cycle 

Equation (2) of the ramped part of S-N curve5                 
m m

x x x
N C zN N      

 
If we know, in addition to the endurance limit, another number N of cycles to fracture for the stress 

amplitude 
x

N , we are able to calculate the exponent m. However, due to non-parallelism of the limit S-N 

lines, the notch factor is not constant and the value for infinite life should not be used generally. 
 

 

                                                
5 Both S-N diagrams are in logarithmic scales. 

= 107 
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1b) Procedure for a non-symmetric stress cycle  

 

In HCF region it is possible to transform a non-symmetric cycle (with stress amplitude σAN and σm > 0) into 

a fictitious symmetric one (with amplitude σN) showing the same factor of safety; the procedure is based on 

simplified Haigh diagrams, similarly to the concept of nominal stresses for  life.   

For instance, when using Serensen simplification of Haigh diagram similar to eq. (7) and (8), we can obtain 
the following formulas for amplitude σN of the fictitious symmetric cycle (see figure below): 

 

mANN                         for a smooth (unnotched) specimen (HL.) and 

m

AN

x

ANx

AN

x

N 



 

                for a notched specimen (VR.). 

   

   

 

 

 

  

σm 

σa 
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2) Loading with varying stress amplitude (uniaxial stress state)  
 

Procedure for several different stress amplitudes – hypothesis of linear accumulation of damage 

(Palmgren-Miner) 

 

This approach is based on the assumption that partial damage ΔDi caused by a family of loading cycles (with 

approx. identical parameters) is given by the ratio of the number of cycles ni in this family to the number of 

cycles till failure Nf i valid for this family of cycles:    
if

i

i
N

n
D     

Fatigue failure occurs when the total damage by all families of loading cycles DNf reaches the limit value c. 

This value should be determined on the basis of experiments; if these are not available, theoretical value of 
c=1 can be used. The total damage DNf is calculated as summation of partial damages caused by individual 

families of cycles; the failure criterion can be formulated as follows:    

c
N

n
DD

s

i fi

i
s

i

iNf  
 11

 

where s represents the total number of families of loading cycles. 

After substituting the approximation of S-N curve by eq. (2), this formula can be manipulated to obtain the 

form           






s

i

i

m

aim

cfz

Nf n
N

D
1

.
1




    

where Nfz is the number of cycles corresponding to the endurance limit in the S-N curve (for steels 107). The 
exponent m (being always positive) relates to the slope of the S-N curve (in high cycle region this curve 

appears straight in logarithmic coordinates). 

(13) 

(14) 
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3) Loading with stochastic stress history (in uniaxial stress state)  
 

 Assessment of durability requires decomposition of the stochastic loading (stress and strain) history into 
individual families of loading cycles (see figure). Rainflow method and reservoir method are most frequent 

in this decomposition. 
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Rainflow method 
                     

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  



  Strength of materials II- Fatigue failure 

 

  

Approaches in Low Cycle Fatigue 
 

Concept of fictitious linear elastic stress (used in some EN or ASME standards) 

 
It is a highly simplified concept based on recalculation of strains in low cycle fatigue region (i.e. above the 
yield limit) into stresses by using Hooke’s law (Hookean, linear elastic stresses); Manson-Coffin curve 

defining the life for different strain amplitudes is recalculated to (fictitious) stresses in the same way. Thus 

we can compare these stresses instead of strains. The calculated stresses are fictitious (non-realistic) and may 
highly exceed not only the yield stress but also the ultimate stress (strength) of the material.   

The advantage is that we can unify Manson-Coffin curve with S-N (Wöhler) curve and do not need to 

distinguish between LCF and HCF region.  
 

For asymmetric cycles the following modified Manson-Coffin formula can be used:  

   cff

b

f

mmf

at NN
E

k
22 /

/




 


 , 

where km is an additional material parameter; if you do not have at your disposal experimental data on the 

influence of mean stress on the endurance limit of the applied material, you can use (according to Morrow) 

the value of  km=1.  
The obtained fictitious symmetric cycle can then be evaluated using the same procedure as in the case of real 

symmetric cycles.   
Note: In practical applications also other approaches to evaluation of non-symmetric stress cycles are applied, e.g. SWT 

(Smith-Watson-Topper).  
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Concepts of local elastic-plastic stresses and strains  

 
1. Concept of plastic stress redistribution (Neuber)   

 

For unidirectional loading Neuber derived (in 1968) the expression   

         
H

H
nom

 


  


    

H  …  shape factor – evaluated for elastic stress state under assumption of 

validity of Hooke’s law; (mostly denoted only α, without subscript) 

H  … stress evaluated under assumption of validity of Hooke’s law within all 

the range of loading, denoted usually as „Hookean stress“ (or linear or 

elastic stress as well).  
 

  … stress concentration factor    
nom







  

  … strain concentration factor    
nom







  

 
  … true stress in the root of the notch (local stress in the root of the notch – local true notch stress) 
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After substitution   
2

nom nom

 


 
 

 

or                    
 

2 2
nom2 H

nom nom .konst
E E

  
    


         .. const     

 

We have obtained equation describing an equiaxed hyperbole in coordinate system   . 
 

Note: Although not emphasized, it was assumed that nominal stresses and strains are purely elastic here, given by Hooke’s 

law: nom
nom

E


   

The above formulas have been derived 

for monotonically increasing load. 
Later it was confirmed experimentally 

that they can be applied also for a 

cyclic load. 
 

a) Opening halfcycle (O – 1) 

This halfcycle represents 

unidirectional loading from the origin 

0 to point 1. We are seeking for the 
point of intersection of the equiaxed 

hyperbole with the cyclic stress-strain 
curve.  

(15) 
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 Equation of the hyperbole with origin in point 0:    
 

2
2

h,nom H hH
h h

E E

  
 


    

 

 Equation of the cyclic stress-strain curve:    

1/

h h
h

n

E K

 



 

    
 

By solving these two equations we obtain maximum stress h  and maximum strain h .  

 

b) Consecutive halfcycle (1 – 2) 

This halfcycle represents unloading from point 1 to point 2. 

We are seeking for the point of intersection of the equiaxed hyperbole with its origin in point O1 with the 

respective branch of hysteresis loop.  

 Equation of the hyperbole with origin in point O1 :   

 
2 2

H nom H

E E

  
 

 
     

 Equation of the branch of hysteresis loop:    

1/

t 2
2

n

E K

 



  

    
 

 

By a (numerical) solution to these two equations we obtain stress range   and range of total strain t , 

eventually amplitude of total strain εat. Then we can assess the number of cycles till failure on the basis of 

Manson-Coffin curve. This assessment is usually conservative when compared with reality. 

Note.: More than ten different modifications of the original Neuber concept have been proposed till now.  
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2. Concept of equivalent energy (energy criterion Molski – Glinka) 

 
It is based on the assumption of the same value of isovolumic strain energy density (energy of the shape 

change) for linear elastic and elastic-plastic deformations.   
 

 
1/

h h
h

n

E K

 



 

    
                                    

a

aalala d




0

,, ..
2

1
 

 
 

 

 
 

 

 
 

 

 
 

Calculation of εa can be carried out by using numerical methods of solution.   

The strain amplitude values calculated using Molski-Glinka criterion are lower than using Neuber approach, 
it means we get higher numbers of cycles and a better agreement with reality. 
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3. Using FEM in evaluation of elastic-plastic deformations 

 
Finite element method (FEM) enables us to calculate the strain amplitude for any shape of the body and 

elastic-plastic material model. Maximum value (mostly in a notch) can then be used for assessment of the 
number of cycles till failure in Manson-Coffin curve. 

 

All the presented concepts for finite life presented here are valid for uniaxial stress states (and for non-
symmetric stress-strain cycles). They can be formulated also for biaxial stress states, namely for both 

proportional and non-proportional loading.   

 
 

 

 
 

 

Fatigue for multiaxial stress states (and asymmetric cycles) 
 

There are not yet general rules or standards for evaluation in this field.   
 

Actual information and databases can be found e.g. at the following web pages: 

 

www.pragtic.com 

www.fatiguecalculator.com 

www.freewebs.com/fatigue-life-integral/ 

http://www.pragtic.com/
http://www.fatiguecalculator.com/
http://www.freewebs.com/fatigue-life-integral/

