
 
System of general equations of elasticity 

General Hooke’s law 
In the course Strength of materials I, problems of elasticity of bars only were solved. To solve 

stresses and strains in a general 3D body, it is necessary to create and solve a system of 

general equations of elasticity.  Their solution in a specific case can be found by means of two 

basic approaches:  

 differential approach – solution to a system of differential equations, 

 variation approach – formulation of an energetic quantity and finding its minimum by 

means of calculus of variations. 
Material is assumed to be a homogeneous isotropic linear elastic continuum; its mechanical 

properties can be described by global elastic parameters (E, μ – characterizing its elastic 

behaviour) and by other material parameters (Re – yield stress or Rp0,2 – conventional yield 

stress, Rm – ultimate stress, σC – fatigue strength, KIC – fracture toughness, etc.) characterizing 

conditions of failure. Three of the necessary differential equations are formulated on the basis 

of equilibrium of a threefold infinitesimal element.   
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These equations are often called 

Cauchy equations of equilibrium. 



Overview of the most important properties of the stress tensor (revision from 

the course of Strength of materials I).  

The listed properties are explained or specified in greater detail at the following 

pages. They are common for any tensor quantities. 

 

1. It can be expressed in the form of a square matrix Tσ (3 x 3 in a 3D 

space). 

2. Coordinates of the tensor in any rotated coordinate system can be 

calculated from this matrix; they represent stress components acting in 

the corresponding planes.   

3. A position can be found among the rotated coordinate systems (different 

rotated positions of the element) in which all shear stresses equal zero; the 

corresponding normal stresses are then called principal stresses. 

4. Principal directions (directions of the principal stresses) are mutually 

perpendicular; the angle between two principal directions is arbitrary 

only in the case that the corresponding two principal components equal in 

magnitude (in the figure σ2 = σ3).  

5. Principal stresses can be calculated from the characteristic equation of 

the stress tensor; it is a third order algebraic equation having three real 

solutions. The coefficients in this equation are invariants of the stress 

tensor. 

6. A graphical representation of the stress tensor in Mohr’s plane represents 

stress components in all the rotated coordinate systems and enables us to 

calculate minimum and maximum values of the normal and shear stresses 

easily.  

7. If some of the stress components equal zero or each other, specific types 

of stress states can be defined: biaxial, uniaxial, equibiaxial, hydrostatic, 

shear, or bar-type stress states. 

8. Any stress tensor can be decomposed into its spherical Kσ and deviatoric 

Dσ parts.  
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7) Specific types of stress states  

 
 

8)  

 KDT   
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Strain tensor 

strain-displacement (geometrical) equations 
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Properties of the strain tensor  

can be formulated on the basis of tensor calculus (analogy with stress tensor): 

 

1. It can be expressed in the form of a square matrix Tε (3 x 3 in a 3D 

space). 

2. Coordinates of the tensor in any rotated coordinate system can be 

calculated from this matrix; they represent strain components in the 

corresponding planes.   

3. A position can be found among the rotated coordinate systems (different 

rotated positions of the element), in which all the three angular strains 

equal zero; the corresponding length strains are then called principal 

strains. 

4. Principal directions (directions of the principal strains) are mutually 

perpendicular; the angle between two principal directions is arbitrary 

only in the case that the corresponding two principal components equal in 

magnitude (in the figure ε2 = ε3).  

5. Principal strains can be calculated from the characteristic equation of 

the strain tensor; it is a third order algebraic equation having three real 

solutions. The coefficients in this equation are invariants of the strain 

tensor. 

6. A graphical representation of the strain tensor in Mohr’s plane represents 

strain components in all the rotated coordinate systems and enables us to 

calculate minimum and maximum values of the length and angular strains 

easily.  

7. If some of the strain components equal zero or each other, specific types 

of strain states can be defined: biaxial, equibiaxial and other strain states. 

8. Any strain tensor can be decomposed into its spherical (volumetric) Kε 

and deviatoric (shape) Dε parts. 
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7)  Strain state types 

 
 

 

 

8) Strain tensor Tε can be decomposed into its volumetric Kε and deviatoric Dε parts. 
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Basic types of general equations of elasticity: 

 

1. Cauchy equations of statical equilibrium of an infinitesimal element: 

a) Inner element: 

 

 

 

 

 

 

 

 

 

 

The element shape is a hexahedron (or cube), the specific volumetric load        in the 

equations can be a gravitational, centrifugal, electromagnetic or other force. 

 

b) Boundary element: 

 

 

 

 

 

 

 
Note: In textbooks the cos symbol is often omitted in 

these equations. 

 

 

 

The element shape is a tetrahedron with one 

wall being on the body surface. If the body 

surface is unloaded, the corresponding traction1 p equals zero.  

 

2. Strain-displacement equations: 

The above partial differential equations, relating components of the displacement vector with 

components of the strain tensor. 

 

3. Constitutive equations: 

They express mutual relations among the components of stress and strain tensors. In the linear 

elasticity, these relations are described by the general Hooke’s law.  

                                                
1 Traction (or more rigorously Cauchy traction vector) is infinitesimal force per infinitesimal area of an 

imaginary separating surface. Mostly it is used for body surface or interface between bodies, to distinguish the 

stress acting here and having character of a vector from the stress inside the body defined uniquely by stress 

tensor. 
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General (3-dimensional) Hooke’s law 
This law is valid for a homogeneous isotropic linear elastic material (Hookean material). 

It can be derived easily (using the principle of superposition) on the basis of uniaxial loads in 

three mutually perpendicular directions. For explicitly expressed strain components it holds:  
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Inverse relations (with explicitly expressed stresses) can be derived e.g. using Cramer’s rule: 

(the example below holds for one of the normal stress components): 
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By introducing new elastic parameters G and λ (Lamé constants) we obtain: 
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This relation is limited to strains εi < 1%!. 

 

Another dependent elastic parameter is bulk modulus, defined as ratio of mean stress σs to 

relative volumetric change e 

 

 

 

 

 

 

and related to the other elastic constants by the following formula: 

 

 

 

 

For μ=0.5, the bulk modulus tends to infinity (incompressible material).  

 

Frequently the generalized Hooke’s law is used in its matrix form, or some simplified shapes 

of the equations can be derived, valid only for plane stress state, plane strain state, or shear 

stress state.  
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 Hooke’s law for plane (2D) stress state  
 

Plane stress state occurs in many practical applications, e.g. at thin wall bodies (membranes, 

plates, discs, etc.) or in experimental stress evaluation (strains are dominantly measured on 

the surface where plane stress state occurs even in general bodies).  

 

If σz = 0 in a plane stress state, then simplified equations can be derived for the other normal 

stress components:  
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Equations relating shear stresses with angular strains remain unchanged. 

 

For plane strain state it can be shown that a 3D stress state occurs. 

 

The only exception is shear strain state (a specific type of plane strain state with ε1 = - ε3) in 

which also a specific type of plane stress state occurs (shear stress state with σ1 = - σ3). 

 

 

 

Elastic strain energy W (potential energy of the elastic deformation) can be obtained by 

integration of the strain energy density Λ throughout the volume of the body. For multiaxial 

state of stress the strain energy density is given by summation of works done by all the stress 

components; in a principal coordinate system summation of works done by principal stresses 

is sufficient and it holds (for a Hookean material):  

 

 

 

 

 

 

 

 

 

 

 

Boundary conditions (BCs) are necessary for any solution to differential equations. There 

are two basic types of BCs:  

 

 deformation BC ─ (known displacement values prescribed in some points of the body) 

 

 force BC ─ a pressure is prescribed on a part of the body surface. This BC is valid also 

for any free surface of the body (pressure equals zero).  
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Review: 

 

Output values   

 displacements (displacement vector with its components u, v, w),  

 strains (strain tensor Tε with its independent components εx, εy, εz, γxy, γyz, γxz), 

 stresses (stress tensor Tσ with its independent components σx, σy, σz, τxy, τyz, τxz), 

 

In total 15 unknown components are described with functions u(x,y,z), Tε(x,y,z), Tσ(x,y,z). 

 

These functions of the output values are to be solved analytically from the system of 

equations of general elasticity, consisting of the following 15 equations: 

 

 equations of static equilibrium of a 3D element – 3 partial differential equations, 

 strain-displacement equations – 6 partial differential equations, 

 Hooke’s law – 6 linear algebraic equations.  

 

 

 



Fundamental problem of the general theory of elasticity 

 

Its basic formulation is in the form of the so called direct problem (inputs  outputs). 

   

Inputs: geometry, material, supports, loads. 

Outputs: displacements, stresses, strains.  

 

Kirchhoff has proven the uniqueness of the solutions to direct problems in the theory of 

elasticity.   

 

Inverse (indirect) problem (output  input): on the basis of a known output parameter (e.g. 

allowable stress) some of the input parameters can be calculated (a dimension, required 

material strength, allowable load, etc.). Solutions to these problems are not unique, the 

procedures can be numerically unstable (ill conditioned). 

 

Optimization problem: input parameters are varied with the aim to achieve an extreme value 

of an optimization quantity (e.g. minimum weight, maximum load-bearing capacity, etc.). 

 

 

 

 

Variants of solutions to the system of general equations of elasticity differ mutually by the 

choice of the basic unknown quantities. 

 

 Deformation variant: 

The procedure continues from displacements to strains and consequently to stresses. 

This variant is the most frequent in both analytical (based on differential calculus) and 

numerical (based on calculus of variations) solutions.  

 

 Force variant: 

The procedure continues from stresses to strains and consequently to displacements. 

However, with stresses as primary independent functions the continuity of 

displacements (and consequently continuity of the body itself) is not ensured, therefore 

some additional equations (equations of compatibility) are needed here to enforce the 

continuity of the body. Practical applications are very rare. 

 

 

 

 



 

Approaches to solutions to a direct problem 

of general theory of elasticity 
 

 

Differential approach     Approach of variations  

 

 

Analytical solution      Numerical solution 

 

 

Deformation variant  Force variant  Hybrid variant 

 

 

 

Comparison of both approaches to the solution: 

 

1. Analytical solution 

Advantages: if there exists a closed-form analytical solution, functional relations among 

input and output quantities can be expressed explicitly; also the solutions to the inverse and 

optimization problems are relatively easy. 

Disadvantages: analytical solutions can be found for a few problems only. 

 

2. Numerical solution 

Advantages: even very complex problems (from the point of view of geometry, material 

behaviour, etc.) can be solved using up-to-date computational equipment. 

Disadvantages: we need an expensive software, much experience, model creation is time-

consuming, we do not know any direct relations among the input and output quantities and the 

results can hardly be generalized; neither inverse nor optimization problems can be solved 

directly. 

 

 

In the following chapters the deformation variant of differential approach is applied to find 

analytical solutions to some simplified problems. The general procedure is as follows: 

 

strain-displacement equations     Hooke’s law  Cauchy equations of equilibrium 

 

In this way we obtain the following Lamé equations of general elasticity: 

 

 

 

 

 

 

 

 

 

 

Their general solution is not known, they can be solved analytically only in some simplified 

cases.  
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