
 
 

Basic model bodies of general theory of elasticity 

 
1. General body – analytical solution is not known. 

 

2. Axisymmetric body  

An axisymmetric body in the theory of elasticity must give axisymmetric 

results (stresses, strains, displacements); therefore it needs not only to have an 

axisymmetric geometry, but its material properties, supports and loads must be 

(approximately) axisymmetric as well. Analytical solutions are known for 

cylindrical and spherical (thick wall) bodies. 

 

3. Thin-wall body (straightforward analytical solutions exist also in 

axisymmetry only) 
 

  

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Overview of analytically solvable model bodies 
 

• Rod-like bodies (bars, beams, columns, shafts) 

• Thick-wall cylindrical and spherical body 

• Rotating disc  

• Axisymmetric (or rectangular) plate 

• Axisymmetric membrane shell  

• Cylindrical moment shell  

Middle surface is curved  

shell of revolution 

Middle surface is planar (not curved) 

in both deformed and 

undeformed states  - 

wall (load acting only 

in the middle surface) 

in the undeformed state, but 

curved in the deformed state  - 

plate (load acting perpendi-

culary to the middle surface) 

Stress is constant through 

the thickness - membrane     

(momentless) shell theory  

Stress varies throughout 

the thickness - moment  

shell theory (bending) 

  



Axisymmetric body 

 
To keep the axisymmetry also for the deformed body shape, the angular strains γrt a γtz must 

equal zero (see the bottom fig.), therefore the t-direction (circumferential) is principal direction 

of the strain tensor.  

 

meridian section 

radial section 

cylindric section 

meridian section 

Consequence of 

axisymmetry Principal direction t 

(circumferential)  

To exploit advantages of axisymmetry, 

cylindrical coordinate system is used 

(instead of Cartesian) with coordinates 

r, φ, z and subscripts r, t, z for radial, 

circumferential (tangential), and axial 

components of the investigated 

quantities, respectively. 

 



According to Hooke’s law, zero angular strains correspond to zero shear stresses 

(τrt = 0 and τtz =0) and the free body diagram of an infinitesimal 3D element looks 

as follows: 
 

 
 

 

The strain and stress tensor can then be expressed by the following matrixes, 

each with four independent components: 
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Thick-wall cylindrical body 

 
is a special case of an axisymmetric body. At a cylindrical body neither radial 

section can rotate during deformation so that all the angular strains are zero, as 

well as all the shear stresses. Therefore the directions r, t, z are principal 

directions (of both stress and strain tensors). 

 
 

 

 

 
 

 ruu                        zww   

 rrr   ;   rtt   ;  constz   

radial section 

cylindrical 

section meridian 

section 

meridian 

section 

displacement 

of radial  

sections 

displacement of 

cylindrical  sections 



Formulation of equations used for the solution: 
The parameters to be calculated are: σt, σr, σz, u, all of them depend on the radius r only. 

Displacement w depends on the z coordinate only. 

 

1. Formulation of the strain-displacement equations for a cylindrical coordinate 

system.  
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2. Formulation of the equations of static equilibrium – only the force equation for the 

radial direction is needed for the solution yielding eq. (1). Volumetric (gravitational) 

forces are neglected here. 
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As   konsttrz , , it is assumed also for the axial stresses   konsttrz , . 

  

(1) 



3. For a cylindric coordinate system and with explicitly expressed stresses, Hooke’s 

law can be formulated as follows: 
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and after differentiating σr with respect to r and substituting the strain-displacement equations 

we can obtain: 
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By subtracting the stresses from each other we can obtain 
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and after substitution of the strain-displacement equations  
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4. By substituting eqs. (2) and (4) into eq. (1) and some mathematical manipulations 

(taking 0
dr

d z  into consideration), we can obtain the equation of static equilibrium 

expressed by means of the radial displacements in the following shape: 
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5. This ordinary differential equation has its solution in the shape:  

r

c
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1   

 

6. If we return from the displacements back to stresses, we can obtain their radial and 

circumferential components in the following form:  

 

2r

B
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2r

B
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with A and B being unknown integration constants to be evaluated from boundary 

conditions. 

 

(7a) 

(7b) 

(6) 

(5) 

(2) 

(3) 
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7. By substituting these results into Hooke’s law in the form:  

  trzz
E

 
1

 

we can obtain: 

.2 constAE zz    

As the axial strains εz are constant (independent of radius) the same independency is 

confirmed also for axial stresses σz. 

 

 

 

 

For a cylinder with inner radius r1 and outer radius r2 , loaded by pressure p1 

on its inner surface and by pressure  p2  on its outer surface, the boundary 

conditions for calculation of integration constants can be formulated as follows: 

for 11 prr r    

for 22 prr r     

By substituting the boundary conditions into eqs. (7a) and (7b), we can calculate 

the integration constants and obtain the resulting formulas for stresses: 
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(8a) 

(8b) 



Procedure of the solution to a forward problem: 

 
1. Evaluation of the integration constants in eqs. (7a) and (7b) on the basis 

of boundary conditions (known radial stresses). 

 

2. Evaluation of the axial stress σz either from the equation of static 

equilibrium in z direction or (for a known axial strain) by using Hooke’s 

law. 

 

3. Analysis of the stress distribution, definition of dangerous points.  

The following conclusions can be drawn from the analysis of equations 

(7a), (7b): 

 Both stresses depend on radius - the dependence is polytropic. 

 The stresses are symmetric with respect to  A = (σt + σr)/2 

 The difference between stresses σt, σr decreases with increasing 

radius. 

 Under any load gradients of σr and σt decrease in their absolute 

values with increasing radius. 

 

4. Calculation of principal stresses in the dangerous point, evaluation of the 

factor of safety by using a reduced (equivalent) stress (based on some 

criterion of failure). 

 

5. Calculation of radial displacements – the simplest way is on the basis of 

the circumferential strain, which can be calculated by using the Hooke’s 

law. 
 



Design of a cylindrical pressure vessel – inverse problem 
(closed cylinder loaded by inner pressure) 

 

Objective: proposal of the wall thickness (inverse problem) of a vessel with a 

given inner radius r1, loaded by inner pressure p1 (with a required factor of 

safety ky). 

It holds for the principal stresses: rzt    

For calculation of the equivalent (reduced) stress σred we can use Tresca’s 

plasticity criterion  
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Integration constant B can be calculated from eq. (7a) for the boundary 

conditions of inner pressure p1 and zero outer pressure:  

2

1

2

2

2

2

2

1
1.

rr

rr
pB


  

By substituting for B in the above formula for equivalent stress and some 

mathematical manipulations we obtain the following equation for the unknown 

external radius r2 of the vessel:  
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In the limit state it holds σred = σy = Re. A direct consequence of this formula 

is that no pressure vessel can bear a pressure higher than p1= Re/2. Moreover, 

some factor of safety ky is necessary in practical applications and the allowable 

stress σall ( red

y

e
all

k

R
  ) must not be exceeded; this value depends on the 

given material and the required factor of safety ky. 

 

This limitation can be overcome by means of:  

 a better material with higher yield stress. 

 autofrettage – inducing negative (compression) residual stresses at the 

inner surface of the vessel by exceeding its yield stress locally – done 

with liquid medium (water) to reduce the impact of failure. The 

procedure enables us to (nearly) double the load-bearing capacity of the 

vessel. 

 a multilayer vessel with interference between adjacent layers. 

 

(9) 



Two-layer pressure vessel with interference 

 

 
 

For a two-layer cylindrical pressure vessel loaded by pressure p1 on the inner 

surface with radius r1, with the outer radius r3 and the interface radius r2 ≈r2N ≈r2H, 

it holds from equations (8a) and (8b): 
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Here p2 is the pressure acting at the interface because of the existing interference. 

The magnitude of the interference equals to the algebraic subtraction of radial 

displacements of both bodies in this location (displacements oriented outwards 

are positive in the applied sign convention): 
AB uur 222   

As no centrifugal loads are acting on the bodies in this case, the radial 

displacement of the inner body A is negative and the subtraction can be replaced 

by summation of absolute values of both displacements: 
BA uur 222   

  

for the inner body A 

for the outer body B 

(11) 

(10A) 

(10B) 

 A 

 B 



If all the nominal dimensions are known, this formula enables us to calculate the 

magnitude of interference Δr2 (or Δd2=2.Δr2 for diameter) needed to achieve the 

required pressure p2 on the interface or to calculate the pressure p2 for a given 

interference (in the assembly state, i.e. with p1 =0). We express the displacements 

from the circumferential strain and Hooke’s law, and then substitute equations 

(10A) and (10B) for the stresses; thus we obtain: 
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Then we substitute the results into eq. (11) with pressure p1 being zero and obtain 

the final formula for interference in the unloaded state (i. e. for assembly state and 

related to the diameter as prescribed in technical drawings): 
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To set the optimal interface radius as well as optimal pressure at the interface, the 

following formulas can be used, derived on the basis of assumption of the same 

magnitude of maximum reduced stresses in both layers:  

312 rrr opt     and      
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The above calculations are valid exactly for vessels (layers) with the same lengths. 

If this is not the case (e.g. a wheel forced on a hollow shaft with a much higher 

length in z direction), stress (and contact pressure) concentrations occur at the 

edges of the contact surface. The extreme stresses may exceed even the yield 

stress in some cases but they are not dangerous because the plastic deformation is 

very local (in a very small volume) and cannot be repeated to induce fatigue 

failure.  

 

Full shaft with a wheel 

For a full shaft the boundary conditions are different. To keep the same notation 

and subscripts, let’s assume that a shaft with radius r2 is loaded by pressure p2 on 

its outer surface (contact pressure from a wheel forced on it); then the boundary 

conditions for calculation of integration constants can be formulated as follows: 

 

for trr   0  

for 22 prr r     

 

By substituting the BCs into eqs. (7a) and (7b), we can calculate the integration 

constants B = 0 and A= – p2  and obtain the resulting formula for stresses 

2pconsttr   

Both stresses are independent of radius and equal.  


