
 
 

Rotating disc (axisymmetric wall)  
 

It is a thin-wall body with a planar (circular or annular) middle surface, keeping 

its planarity also in the deformed state. 

The load is allowed to act in the middle 

plane only; this condition together with 

the axisymmetry can be met only by 

centrifugal forces larger by order than 

gravitational forces, which can be 

neglected in this case. Practical 

applications represent high speed 

rotating disc with circular or annular 

middle plane, like circular saws, rotors 

of turbines and other engines, etc. 
 

 

 

The basic geometrical difference from the cylindrical thick-wall body is that the 

disc (wall) is thin (t << r2), which results in the following simplifications: 

 A twice infinitesimal element is sufficient for creation of a free body 

diagram (see fig. b) 

 The state of stress is only two-dimensional (planar - see fig. d) and 

constant throughout the thickness. 
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1. Strain-displacement equations (in the cylindrical coordinate system) are 

identical with a cylindric body: 
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2. Formulation of equations of static equilibrium – we apply only one 

force equation for the radial direction, it can be manipulated to obtain the 

following form: 
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It holds 0z for the axial stress, because 

the stress state is planar here. 

 

 

 

 

 

 

3. Hooke’s law will be applied (with explicitly expressed stresses) in its 

specific form valid for 2D stress state: 
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By differentiation of the first equation with respect to r and substitution of the 

strain-displacement equations, the following equation is obtained: 
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We subtract both equations of the Hooke’s law to obtain  
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and by substituting the strain-displacement equations we can obtain  
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Then we substitute eqs. (2) and (4) into eq. (1) and after some manipulations we 

obtain the following differential equation for radial displacements: 
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Eq. (5) differs from the analogical equation valid for the cylindrical vessel by its 

right-hand side only – it is a non-homogeneous differential equation. 
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The particular integral of the non-homogeneous differential equation can be 

found in the following form: 
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The resulting equation for radial displacements has the shape 
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and enables us to determine strains by using the strain-displacement equations; 

by substituting the results into the Hooke’s law and introducing new forms of 

the integration constants, we can obtain final formulas for stress components in 

the following form: 
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Similarly to a cylindric body, coordinate axes r, t, z correspond to the principal 

directions; formulation of boundary conditions for calculation of the integration 

constants is (analogically to the cylindrical body) based on the loads acting onto 

the inner and outer surfaces. Most typical situations are as follows: 
 

 

 
 

another body - shaft 

a) b) c) 

d) e) f) 
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The most important formulations of boundary conditions: 

 
1) Free (unloaded) rotating annulus – rotating wall with a central hole 

Boundary conditions: 

for  01  rrr   

for  02  rrr   

By substituting the BCs into eqs. (9a) and (9b), we can calculate the integration 

constants and obtain the resulting formulas for stresses 
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We can calculate also the radial displacement of the outer surface (for r = r2) 
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Also the axial strain can be calculated using Hooke’s law 
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It is obvious that the change of the wall thickness (εz<0) is not constant, its 

dependence on radius is parabolic. Distribution of displacement u > 0 is more 

complex, given by eq. (8), while distribution of εt = u/r > 0 is more progressively 

increasing with decreasing radius (see the figure below, more realistic 

distributions calculated using FEM are depicted at the next page). 

                  

(10a) 

(10b) 



 

Distribution of axial and tangential strains along the radius (calculated using FEM) 

 
 

 

 

 

Distribution of radial displacements along the radius (calculated using FEM) 



2) Free rotating hollow shaft 

 Axial deformation is constrained, which results in non-zero axial stresses 

as a consequence of transversal contraction; these stresses are positive near the 

inner surface and negative near the outer surface. Consequently, the axial 

stresses at the dangerous location (the inner surface) are positive, it holds σz = σ2 

> 0 ( rzt   ) and these stresses do not influence the reduced stress 

calculated by using Tresca’s criterion.  

  

3) Free rotating disc (without a hole)  

Boundary conditions: 

for  trr   0  

for  02  rrr   

It follows from these BCs after their substitution into eqs. (9a) and (9b) that the 

constant B=0. Then it holds for stress components: 
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The stress distributions are parabolic in this case with maximum value being in 

the centre of the disc.  

 

4) Free rotating shaft (without a hole) 

Axial deformation is constrained, which results in non-zero axial stresses as a 

consequence of transversal contraction; these stresses are positive near the 

centreline of the shaft and negative near its surface. Consequently, the axial 

stresses at the dangerous location (centre of the cross section) are positive, it 

holds here σz = σ3 > 0, and these stresses reduce slightly the reduced stress 

calculated on the basis of Tresca’s criterion. Consequently, application of the 

above theory is safe, the real factor of safety is higher than the calculated one. 

 



5) Rotating disc with a compressive (tensional) load on the outer surface 

The stress distribution is parabolic similarly to case 3) but the parabolas are 

shifted up (for tensional load) or down (for compressive load) by the value of 

pressure acting on the outer surface of the disc. Consequently, if the load is 

compressive, the position of the dangerous point is uncertain (it can be either in 

the centre or on the outer surface, depending on the magnitudes of the rotation 

speed and pressure).  

 

 

6) Free rotating disc with a small hole  

The eqs. (10) derived for case 1) are valid here as well but they can be 

simplified with respect to a negligible value of the r1 radius: 

0r ; r1 → 0 
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The reduced stress is two times higher than for a disc without the hole (radial or 

tangential stress for r = 0 in case 3)).  

 

Conclusion:  

A small hole induces a stress concentration in its surroundings with the stress 

concentration factor of 2. 

 

 

7) Thin rotating ring 

The following simplification holds here: r1 ≈ r2 = R. Then eq. (10a) yields the 

result σr1 = σr2 = 0 = σr and it holds from the eq. (10b): 
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Due to a negligible thickness of the ring it can be assumed that the stress is 

constant throughout all the volume of the ring, similarly to simple tension of 

bars. 

 


