
 
 

 

Axisymmetric plate  
 

is a thin-wall body with a planar (not curved) middle surface in its undeformed 

state; it can be a circle or annulus. The load acts in the direction perpendicular 

to the middle plane, so that the plate is bended and its middle plane becomes an 

axisymmetric curved (skewed) surface after deformation. Deflection w 

(displacement in the axial direction) is the major parameter of deformation; 

slope υ (tangenta of the rotation angle) is introduced as a slave parameter of 

deformation.  

 

Applications:  

end-plates of vessels, tops of pistons, pressure sensors, etc. 

 

Stress tensor corresponds to a general axisymmetric body, with one of the 

principal stresses (σz) being zero because of the tiny plate dimension in the axial 

direction (thickness); the matrix form of the tensor can be written as follows:  
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Systemization of the plates: 

With respect to their relative thickness, the plates can be divided into several 

groups: 



 

a) Thick plates 

After deformation the deflections are very small, elongations of radial 

fibres are negligible, as well as the membrane stresses. Bending (normal) 

stresses are on the same order as shear stresses (similarly to thick beams) 

and both flexion and shear loads should be taken into account. Normal 

lines of the middle surface do not only rotate but become curved as well. 

The Mindlin theory is based on the simplifying assumption that these 

normal lines remain straight but not perpendicular to the middle surface. 

Not very frequent in technical applications. 

 

b) Thin plates with small deflections  
The common thickness limit for thin plates is h<R/10. Then shear stresses 

are irrelevant from the point of view of failure which is dominated by 

normal stresses. In addition however, the deflection must be as small that 

the problem remains linear in geometry (the common limit is w<h/4). The 

Kirchhoff theory of plates assumes that the normal lines of the middle 

surface remain straight and perpendicular to it; the elongation of radial 

fibres is negligible, as well as the membrane stresses. Only bending 

(normal) stresses are taken into account; they are distributed linearly 

throughout the plate thickness with zero value in the middle surface. This 

theory offers the simplest calculations among all theories of plates and is 

the most frequent in technical applications. 

 

c) Thin plates with large deflections  
The flexural rigidity (related to thickness) of these plates is lower than of 

those in par. b). Thickness limits cannot be defined exactly, because they 

depend on the material parameters and load magnitude; the limits are 

given by the deflection magnitude (h/4<w<5h). Large deformations of 

these plates require a non-linear solution (non-linear geometrical relations 

under load) and the membrane stresses need to be taken into consideration 

as well. 

 

d) Membranes  
They are as thin that their flexural rigidity is negligible, their calculations 

take only tensional load into account (normal stresses uniform throughout 

the thickness, membrane stress state); the membrane theory of shells 

(chapter 10) can be used only under condition their large displacements 

(deformed geometry) are taken into account. Also here their relative 

deflection under load, rather than their thickness, is the conventional 

limiting quantity (w>5h).  



Kirchhoff theory of thin axisymmetric plates 
 

A typical element is twice infinitesimal: 

 
 

Basic assumptions 
 

1. Stress and strain states are axisymmetric –tangential direction is a principal 

direction (see the figure above). 

2. Normal lines of the middle surface remain straight and perpendicular to this 

surface (see the figure below), consequently cylidrical sections change into 

conical ones, and the strains and stresses are distributed linearly throughout 

the plate thickness. 

 
 

3. τrz ≈ 0, shear stress is negligible from the point of view of failure; however, 

this stress is necessary to equilibrate the element of the plate.   

4. The stresses perpendicular to the middle surface (z) are negligible (because 

of small thickness of the plate).  

5. Points in the middle plane show negligible radial displacements (uR = 0), 

consequently membrane stresses are negligible.  

meridian section 

cylindric section 

 

cylindric section 

in the undeformed state 

changed into conical section 

in deformed states 

γzr≈0 

 

 



Relations between deformation parameters 
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Minus is added in eq. (2) due to the orientation of z axis; for positive z coordinate we obtain 

negative radial displacement u and vice versa.  

(1) 

(2) 



Stresses in an infinitesimal element 
 

 
The stresses can be replaced by their resulting loads distributed along lines 

(forces and couples per unit length – see figure below) on the basis of the 

following equations of static equivalence:  

 mmNdzt

h

h

rz /
2

2




 
 





2

2

h

h

rr dzzm              
 mmNmmdzzm

h

h

tt /
2

2




 
 

 

 

dφ 

mr+dmr 

mr 

(3b) 

(3a) 

t 

t+dt 

mt 

mt 

 

 
 

p 

 



System of equations used in the solution  
 

Equations of static equilibrium: 
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Strain-displacement   equations: 
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Constitutive equations (for plane stress conditions): 
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The procedure of solution: 

Strain-displacement  equations (5) are substituted into the constitutive equations 

(6), and the results further into the equations of static equivalence (3b). After 

some manipulations we can obtain:   

  





















rdr

d
B

rdr

dEh
mr









 2

3

112
 

  





















dr

d

r
B

dr

d

r

Eh
mt









 2

3

112
 

 

In these equations the multiplicand in front of the brackets represents the 

flexural rigidity B of the plate  
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The formulas (7) and a derivative of the formula (7a) can be substituted into the 

momentum equation of static equilibrium (4b), and after some algebra we can 

obtain the following differential equation (containing the slope υ as the 

unknown function): 
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A general solution to eq. (9) exists in the following form: 
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Here  υp  represents a particular integral of the non-homogeneous differential 

equation (9); its form depends on the form of the function t(r) (shear force 

distributed along a line). 

 

Eq. (9) can be transformed into the following form 
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which makes the solution possible by two successive integrations.   

 

On the basis of eq. (1), another integration of eq. (10) gives the relation for the 

deflection w of the plate: 
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Boundary conditions 
can be formulated on the basis of constraints of deformation parameters 

(supports), external loads (couples distributed along line), axisymmetry of the 

plate middle surface (for a circular plate without a central hole), or of continuity 

and smoothness of the middle surface (at the boundaries between individual 

intervals).  

 

 Supports:  

o Fixed support: w=0, υ=0=w' . 

o Pin or roller support (both are equivalent because of negligible forces 

acting in the middle plane): w=0. 

 Free edge (not fixed and unloaded): mr=0 

 When a distributed line couple acts on the free edge, the radial moment here 

is not zero but equals to the magnitude of this couple.  

 A plate without any hole: for r=0 it holds υ=0 => c2=0.  

 It is necessary to divide the plate into intervals in those locations (with 

exception of the plate edges, naturally) where it is 

 discontinuity in loads (in the form  of a support, concentrated line 

load, change in the character of distributed loads),  

 change of the plate thickness or in material parameters.  

Each of these intervals requires a specific differential equation coupled with 

the equations for the neighbouring intervals by three boundary conditions at 

each boundary. These boundary conditions are based on the equality of 

deflections, slopes and radial moments at the boundary.   

 If an external distributed line couple acts on a circular line defined by its 

radius (except for the plate edges), a stepwise change occurs in the values of 

the radial moment; the magnitude of this step equals to the magnitude of the 

distributed line couple acting here.  

 

Evaluation of stresses 

 

When the boundary conditions are solved and the integration constants known, 

we are able to calculate stresses. By substitution of eq. (10) into eqs. (7) we 

obtain formulas for both bending moments. Then we apply eqs. (3b) and the 

assumption of linear distribution of stresses (σr= A.z) which gives for radial 

moment mr (and analogically for tangential moment mt): 
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Typical examples of supports of axisymmetric plates 
 

 



Procedure of solution to a direct problem: 
Note: The force equation of static equilibrium (4a) was not used in the 

solution. The static equilibrium of z components of forces is then used in 

evaluation of the distributed line shear force; however, it is easier to 

formulate this equation in another form, namely for a finite element of the 

plate separated by a cylindrical section. 

 

1. The plate is divided into intervals along its radius; in each of them the 

shear force must be defined by a single continuous and smooth function, 

and the plate thickness and modulus of elasticity must be constant. 

 

2. For each of the intervals, a finite element (cut off by a cylindrical section 

with variable radius r) is isolated from the plate as a free body, and the 

distributed line shear force t(r) is calculated from the z-axis equation of 

static equilibrium.  

 

3. The slope υ(r) can be determined by two consecutive integrations of eq. 

(11) or by substituting the particular integral υp into eq. (10); deflection 

w(r) can then be obtained by another integration of the υ(r) function. 

 

4. We formulate boundary conditions (3 for each of the intervals) and 

calculate the unknown integration constants in the obtained equations.  

 

5. By substituting υ(r) into eqs. (7), we can calculate the distributed line 

moments as functions of the radius r and draw their dependences on the 

radius. 

 

6. We find the dangerous points of the plate, i.e. extremes (maxima) of the 

moments expressed as functions of the radius. Extreme stresses in the 

dangerous points can be calculated from the following formulas: 
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7. As the third principal stress σz equals zero, the reduced Tresca stress 

(valid for a ductile material) equals to the magnitude of the larger one of 

both of the above stresses. This value is then used for calculation of the 

factor of safety.  
 

8. The deflection function w(r) can be obtained by substituting the 

integration constants into eq. (12) (together with the known function wp). 

For validity of the solution, the maximum of this function must meet the 

condition    

wmax < h/4 


