15. Buckling and stability
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One of the simple loads we dealt with above was simple compression. One of the basic
assumptions was that cross sections of the bar mutually only come near (or draw apart

in the case of tension).

However, if a slender bar is loaded in compression (then we
call it usually a column) its real behaviour is different. Bey-
ond a certain load the column begins to bend and this ben-
ding is as pronounced that it becomes the substantial type
of deformation. It means that the type of substantial de-
formation changes during the loading process. While in
the initial phase of the loading, shortening of the column
is substantial (and no or only a negligible bending occurs),
under higher loads the situation is opposite - the bending
is substantial and the shortening becomes less important.
The boundary between these two phases is denoted as limit
state of shape stability or buckling.
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of the column is changed.

The limit state of buckling is the state in which the type of the substantial deformation Problom 70




15.1. Buckling of an ideal free column

We analyse a column under the following assumptions:

a) the centreline of the column is perfectly straight in the unloaded state,

b) the column is prismatic and non-screw-shaped,

c) the cross section is thick-walled (all the dimensions of the cross section are on
the same order),

d) the column is loaded by two isolated forces F' (being in static equilibrium) acting in
centroids of the column facings; the lines of action of these forces are identical with
the centreline of the column in the unloaded state,

e) the material of the column is homogeneous. isotropic and perfectly (without any
limitations) linear elastic (o — 00),

f) during the whole loading process the bar assumptions of simple loading are valid.

Meeting the above assumptions is characteristic for ideal loading of an ideal bar.

The objective of the solution is, in the first place, to determine when shortening is the
substantial deformation of the column an when, in opposite, bending is more significant.
Therefore we limit ourselves on the significant components of inner resultants:

shortening - normal force N
bending - bending moment M,

Stress states and deformations of the bar under compression without bending have been
analysed in chapter 11. Simple tension and compression. Now we focus on flection.

From the above methods of calculation of deformation under flection, only the differen-
tial equation of the deflection curve can be applied, namely in the form valid for large
deformations.
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Moreover, for the isolation of an element of the bar as
a free body, the deformed shape of the bar must be
taken into account (because in the undeformed shape,
there is no bending moment!).

As a consequence of the deflection of the deformed cen-
treline, shear force T and bending moment M, act in
the cross sections (in addition to the normal force N )
Therefore the bar is loaded by a combination of com-
pression, shear and flection; as it is, however, long and
slender (otherwise there would be no bending), ben-
ding load is the most substantial, while the other two
components of inner resultants are negligible.
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As we assumed the bar to be homogeneous, prismatic and non-screw-shaped, the deflection
curve will be an in-plane curve.

We express the bending moment M,(x) from the moment equilibrium equation of the bar
element and substitute it in the differential equation of the deflection curve valid for large
deformations:

M,(xz) — Fw(x) =0 = M,(xz) = Fw(z)
It is evident from the relation that the bending moment and, consequently, stresses in the
bar are function of the deflection w; therefore stresses and deformations cannot be solved
separately as it was possible in the linear theory of elasticity.

w” Fuw(x)

(1+w?)? EJ
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The general solution to the above differential equation of the 2nd order includes two
integration constants; we must formulate two boundary conditions to determine their
values.

r = 0 w = 0
r = lg w = 0
The solution to the differential equation with the -
above boundary conditions is not realisable, be- VXmax branch 2 ka*
cause we do not know the real distance [; between stable __ unstable
the ends of the bar which is less than the len- bending equilibrium
gth [ of the bar. Lagrange solved this problem by I Wmax
neglecting this difference (for | = l;). We intro- i 5
duce only the result of the Lagrangean solution ' branch 1 _ stable equilibrium

in the form of dependence of the maximum de- / Fy / F

; stable | " Jabile
max . . .
flection w paxon the load F Fir
shortening  shortening

In the figure you can see the critical force of buckling Fj, defining the following intervals:

F < Fy. - the bar is shortened only, there is no deflection,

F > Fy. - the bar is either only shortened, then it is in a labile equilibrium
(branch No 1 in the figure), or only bended and then it is in a stable
equilibrium (branch No 2 in the figure),

' = Fy. - the stable shortening changes into instable and bending becomes the
stable deformation state; it is the point of equilibrium bifurcation.

The point of equilibrium bifurcation represents the limit state of buckling of an ideal
bar under ideal compressive load.
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The Lagrangean solution is mathematically very difficult and not suitable for practical

use. Therefore we solve the above differential equation of the deflection curve under as-

sumption of small deformations (v’ < 1 = 1+ w2 = 1). It is evident from the figure that

this assumption can be valid until the force reaches the critical value Fj,; in this range

deflections are negligible. It is not possible to determine the deflections of the bar after

its buckling by this simplified solution but only the values of the critical force at which

the buckling (limit state) occurs. Thus we solve the differential equation of the deflection
curve in the form:

Fuw(z)
"
=0.
w + £
As it holds l; = [, the boundary conditions can be expressed in the form
z = 0 w = 0
r = w = 0

2:

By denoting p ELJ it can be transformed into the normalised form

w” + p*w =0,
for which the solution is known, among others, in the goniometric form
w = Cysin(px) + Cy cos(pz).
Integration constants can be determined from the above boundary conditions:

w(0) 0: 0 = C;sin0+Cycos0 = (Cy=0
w(l) 0: 0 = Cysin(pl) — C;sin(pl) =0
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The second condition will be met if

a) C; =0 = w = 0 with any sinus function argument = the bar remains straight
under any load F, it corresponds to the branch No 1 of the Lagrangean solution
(labile equilibrium); this situation cannot occur in practice because of imperfections
of a real bar, but we can obtain it as an unrealistic result of a numerical solution
(e.g. using FEM).

b) C1 #0 = sin(pl) =0 = pl=knfor k=0,1,2,...

2
We substitute for p : WELJ =kr — F= (lm;# for k=0,1,2,...
—k=0: F' = 0 — the bar is unloaded in this case and there is no reason for
it to deform, therefore w = 0.
2
—k=1: F=F,="T Z§J # 0 = w # 0, the deflection is uncertain,

because the condition is met for any ' value. By comparison of this result with
the general solution we can see that they are in agreement in the surroundings
of the point F}, for very low deflections, because the tangent line to the curve
of w dependence is perpendicular to the F' axis in this point. It means, however,
that we obtained the exact critical force value F, from this approximate solution
(valid however for an ideal and ideally loaded bar only).

-k >1= F > F, and the deformation state (see figure)
would be unstable so that it cannot occur in a real structure.
The stability of this deformation state can be achieved in a real structure by
supports (deflection constraints) in some points of the bar; the critical force value
can be substantially increased in this way. At a free bar, however, the only
stable state is the deflected state under load Fj,.
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The above analysis enables us to formulate the following conclusion:

If we solve the differential equation of deflection curve under assumption of small de-
flections (w? < 1), we obtain the correct value of critical force Fy, at which equilibrium
bifurcation occurs but we are not able to determine the deflections of the bar for the load

values F' > Fy,.

For the correct calculation of the critical force, it remains us to

determine the plane in which the bending happens. It will be that j  —j,

plane for which the critical force F}, is minimal, because in all other
planes the bifurcation point would be achieved under a higher load.
As the critical force F}, is proportional to the moment of inertia of
the cross section J (Fj, = 7T2E—2‘]), it will be minimal for the lower
of both of the principal moments of inertia (J = .J;). It means that
the neutral axis of bending is identical with the axis with respect
to which the minimal moment of inertia Jy is achieved. The
deflection occurs in the direction of the J; axis, because bending
in other directions would not occur but under a higher loading
force. Therefore the deflections occur in the direction of the lower
of both lateral dimensions for the bar in the figure having
rectangular cross section.
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15.2. Critical force of buckling at a supported bar

Till now, we analysed the simplest case - a free bar loaded by two isolated forces being in
static equilibrium on a common line of action. The following relation for the critical force
of buckling F}, was derived for a supported bar (e.g. in [1])

,EJ,
l_2

2 EJ.
Fp = T2

red
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The parameter a is determined by the supports of the bar (it holds a = 7 for a free bar),
the reduced length [,.4 can be determined according the figure. The reduced length of the
supported bar equals to the length of a free bar having the same critical force value as the
analysed supported bar. As the bending moment equals zero in the ending points of a free
bar even in the deformed state, the reduced length equals to the lowest distance between
two points with zero bending moment on the deflection curve of the analysed supported
bar.
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The derived relations hold for an ideal bar under ideal loads; the safety factor for the limit
state of buckling of the bar can be calculated using the formula
o Fkr

ky = Tl

If deviations from the above assumptions of an ideal column are negligible, this value can
be used also for safety factor calculation of a real column. However, higher safety factor
values should be chosen, usually ky € (3;5). On the other side, if the deviations from the
above assumptions of an ideal column are substantial, a continuous increase of deflections
occurs since the very beginning of the loading process; it is a combination of compression
and flection and the limit state of buckling cannot occur at all.

15.3. Compressive load of a column of a real material

Till now we assumed that the material behaviour is linear elastic without any limitations,
so that neither plastic deformations nor fracture occur. Real materials are either ductile
with a pronounced plastic deformation when yield stress o is achieved, or brittle, at which
a brittle fracture suddenly occurs if |0| = og4. In the equilibrium bifurcation point, the

stress achieves the magnitude
N F, EJ E [ [
O = |S| = ; = QZZT; = o? VA where \ = 7 == is the so called slenderness ratio.
S
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The quantity i = 4/ % is called radius of gyration and it serves for comparison of the

slenderness of columns with different shapes of cross-sections.
4 H A

Okr| & ) Okr| ¢ )
i Eulerian hyperbola i Eulerian hyperbola
ORg brittle state ¢ ductile state
of material of material
AR A Ak A

The graph of the dependence of the compression stress oy, in the equilibrium bifurcation
point on the slenderness ratio A of the column is a hyperbola of higher order (Eulerian
hyperbola). The derived relation for the critical force of buckling holds only in the case
that the critical stress o, is less than the limit of the linear material behaviour. The
critical slenderness ratio of the column corresponds to the point in which both of these
stress values are equal. The critical slenderness ratio is denoted A\ or \i for brittle and
ductile material, respectively.
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a) Brittle material:

The buckling can occur if ogg > og, = 042%, i.e. for slenderness ratio of the column

| E
A>a TRd: Agr. For A < Agthe failure of the column by brittle fracture comes into
being.
b) Ductile material:

The elastic buckling can occur if og > o, = 042%, i.e. for slenderness ratio of the

o]

the buckling can occur. Also in this case buckling can come into being if the load
continues to increase but it is plastic buckling already and the derived relations do
not hold any more.

column A > m/% = Ag. For A < \g the limit state of elasticity is achieved before

When solving tasks with columns we must decide which of the possible limit states comes
into being as the first. Let’s present an example of a column made of material in ductile
state. In common structures we allow neither plastic deformations nor buckling. Then the
following statements are valid:

a) for A > \x = the limit state of buckling is decisive, Fy, = 2%

factor corresponding to the buckling will be &, = ];’i’”,

and the safety

b) pro A < A\x = the limit state of elasticity is decisive, and the safety factor corre-

sponding to the limit state of elasticity will be kg = 0(;[; .
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15.4. Examples and problems

Examples

Problem 702

Problems

Problem 701
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