12. Simple torsion

12.1. Definition

Simple torsion is loading of a straight prismatic bar, if

— bar assumptions are satisfied,

— cross sections do not deform, they only mutually rotate around the bar centreline,

— only non-zero component of the inner resultants is torsion moment (torque) M,

— deformations of the bar are not significant from the viewpoint of element equilib-
rium,

— cross section is axisymmetric (circle or annulus).

Notes to the definition

In the beginning of development of the theory of elasticity of bars, the cross sections were
not limited to the axisymmetric ones. The increasing resolution level (development of
measuring equipments), however, brought findings that the cross sections remain planar
(with a sufficient accuracy) only if the cross sections are axisymmetric; in contrary, a
significant warping occurs at all the other cross section shapes. Therefore the formulas
derived below are not valid for non-axisymmetric cross sections; they can be solved
— using methods of general theory of elasticity (bars with cross sections having the
following shapes: equilateral triangle, ellipse, circle with eccentric circular hole),
— using analytical methods (rectangle, square),
— using the finite element method (any shapes).

In contrast to the simple tension theory where we distinguished between tension and

plz -1

par

hssumptiong



plz -2

compression pursuant to the orientation (sign) of the normal force N, the orientation of
the torsion moment is not significant; the body made of an isotropic material behaves in
the same way for both orientations of torques.
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12.2. Geometrical relations

Since we deal with the bars of axisymmetric cross sections only, we can advantageously
use a cylindrical coordinate system with coordinates z,r and ¢ in axial, radial and cir-
cumferential directions, respectively. It can be stated on the deformation of the onefold
(€) and threefold (€23) infinitesimal elements during the loading process:

— the distance dx of the cross sections 7 and )y re-
mains preserved, so that the length strain in the di-
rection of the bar centreline £, = 0 equals zero (under
assumption of small strains),

— dimensions of the cross sections do not change so that
the length strains in radial (¢, = 0) and circumferen-
tial (e, = 0) directions equal zero,

— since the cross sections remain planar, the right an-
gle between the radial and axial directions remains
unchanged (therefore 7., = 0),
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— angular strains 7., are zero in a consequence of the axisy-
mmetric character of deformation,

— faces of the element ()3 rotate mutually by the angle dg
what results in the non-zero angular strain ~,,.; the distri-
bution of this strain throughout the cross section can be
obtained by expressing the displacement AA of a point A
in a general cylindrical section defined by the radius p :
AA" = davy,, what can be expressed dually by the geome-

trical parameters lying in the cross section: AA = pde.

de
’y"f@dw = png = 7xg0 = pa = fy:mp == p'ﬁ,

where v = de is the relative twisting angle being con-
stant for the given cross section.

The angular strain v,, = 7 is the only non-zero component of the strain tensor in the
case of the simple torsion; the distribution of this strain throughout the cross section is
linear with the zero value on the bar centreline (y = p?).

A specific deformation state occurs in the bar, denoted as shear strain state;

0 4 0
2
it can be described by the strain tensor in following shape 7. = % 0 0 ]
0 0 0
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12.3. Stress distribution in the cross section

The stress distribution throughout the cross section can be obtained using constitutive

relations valid for the Hookean (homogeneous, linear elastic) material in the shape o = Fe
in the case of the uniaxial stress state and 7 = Gy in the case of the shear stress state.

It holds for simple torsion:
=6 =c,=0 = o0=0,
Yar = YVor = 0 = Tor = Tpr = 0,
Yoo =7 #0 = Tuplp) =7(p) = Gy = Gpo.

Under simple torsion, shear stresses come into existence in the cross section; the distri-
bution of these stresses throughout the cross section is linear with zero value on the bar

centreline. Normal stresses equal zero.
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The stress state in a point of the body, which is determined
by an only one shear stress component, is denoted as shear hear' stress
stress state.
A shear stress 7,, in a section containing the bar centreline
corresponds to the shear stress 7, in the cross section ¢; both
of these stresses are equal in magnitude (principle of shear
stress equality):

Top = Tox = T
The shear stress state can be expressed in the
following matrix form of the stress tensor, or repre- T
sented on the threefold elementary brick or in the T

Mohr’s plane.

T, =

o 2 O
S O 1
o O O
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12.4. Dependence between inner resultants and stresses

static
cquivalencd

There is an only one applicable equation of static equivalence
between the system of inner elementary plane forces in the
cross section represented by the shear stress 7 and their resul-
tant ]\Zk; we use this equation to determine the dependency
of shear stresses in the cross section on the inner resultants
and on the geometrical characteristics of the cross section:

SSM,: M= / dM, = / ordS = / GYp2AS = GY / 22dS = GOJp,
Y P P P

where Jp is the polar quadratic moment of the cross section. VA
By simple manipulations we obtain further relations from this equation:

- relative twisting angle ¢ = U‘A?]i

P Is
- angular strain 0l = pd= My, p slres
g GJp
_ _ M
- shear stress m(p) = Gy = T(p) = TaP
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12.5. Extreme stress

The shear stress 7(p) = %p will be maximal in those locations of the cross section
where the radius is maximal, i.e. on the outline of the cross section:

- My M, My
TC.Z’_ Jppex_ Q - Wk’
p exr
where we introduced the torsion modulus of the cross section W, = b]ef; .
The torsion modulus of the cross section
— for a circular section
R
4
W_Jp_ﬁ_%_wﬁ’?’_ﬂD?’ -
" m R R 2 16
— for an annular section
I VSN
Q(R -t 7R3 (7“)4 7D? d Q
¢ R > R 16 D v%

Warning! W, is not additive, in contrast to the quadratic moments
(there is p., = R in the denominator in all cases, therefore the mo-
dulus of the small circle Wys cannot be subtracted from the modulus
of the large circle Wy ).
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12.6. Strain energy

Under assumptions of the linear theory of elasticity, all the deformation work is transfor-
med into the reversible strain energy A = W.

During the rotation of the the threefold elementary ele-
ment (23 of the length dz by angle dy, the inner elemen-
tary shear force 7dSj acting on element €23 does the work

occometrical

1 — 1
ATdS = 57’(151414/ = §Tds’}/d$
The strain energy Wo, of the element Q3 (after substitu-
tion of the constitutive relation v = 6) and the strain
energy density A (related to a unit volume dSdz) equal:
2
WQS - ATdS == ﬁde.ﬁ,
WQ T 2 1 1
A= = = A= Z1y=2Gy.
dSdr ~ 2G 2/ T
Note:
The formula for the strain energy density is analogical to the formula derived for the
simple tension.
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The formulas hold generally for any shear stress state. The strain energy Wq, of a one-
fold elementary element can then be evaluated by integration of the following relation

throughout the cross section ¢ (and by substituting 7 = %p, Jp = [[ p*dS)
()

7_2 M2 M2 M2
_ _ —dd:// E_2q2dS = ’“d//Qd: k
Way {/ Wa, {/ e ) 2GS =50 x¢ e T

The total strain energy accumulated in a bar of length [ is

dz,

l l
_ [ M
w(l) _0/ng _O/ZGJde.
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12.7. Expression for deformation characteristic of bar centreline

The deformation of the bar is described by the angle of mutual rotation (twisting) d¢ of
two adjacent sections ¢y and 1, of the element €2y

— 9de = Me (0
dQO = 19(1.%’ == GJ_de kA
The rotation angle ¢ of the cross section cutting away the finite
element () is determined by the integral along the length of
this element

olon) = [ iyt

where xr is the coordinate of the gravitational center of the

section in question, while x,, is the coordinate of the referential

section (usually fixed, having therefore zero rotation angle).
If it holds My (x) =const., G.Jp(x) =const. in a certain part of the centreline and if we
locate the origin of the used coordinate system to the gravitational center of the section
with zero rotation angle (z,, = 0), then

MkZBR
SO(I‘R) - GJP ’

G Jp is denoted as the torsional stiffness of the cross section.

12.8. Deformations of the cross section

Neither dimensions nor the shape of the cross sections do change under conditions of |par
simple torsion. If this is the case, then the assumptions of the simple torsion would be
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violated and the above theory cannot be valid (e.g. warping-buckling of the cross section
by a loss of shape stability in torsion of a thin-walled tube).

12.9. Solving problems concerning simple torsion of bars

12.9.1. Free bar

We derived the relations for stress, deformation parameter and strain energy valid for a
bar under torsion if the bar assumptions are satisfied. r
It holds for bars with circular or annular cross section: pssumption

. Mk(xR) . Mk(xR)' a Mk(flf) M]?(l’)

= Ton)” T W) PR = / GIpmy s WO ~ 2 Ip ()

ensio

IIEEEIi
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If My(x), S(x) or G change along the bar centreline
(in the way, however, that does not violate substan-
tially the assumptions of the simple loading), then
the bar centreline must be divided into intervals (si-
milar to the simple tension) in which each of the
above quantities is expressed by a single (continu-
ous) relation. The borders of the intervals are in those
points of the centreline, where a change occurs in the
functions describing the distribution of G(x), M;(z)
or Jp(z) along the centreline.

The shear stress distribution in the cross section is
linear with the extreme value on the outline in the
case of simple torsion. Therefore all the outline points
of the dangerous cross section are dangerous points
(with the same extreme value of safety factor).
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The rotation angle of the cross section can be calculated:

— using the derived relation for the twisting angle of the cross section, the gravitational
center of which has coordinate xy:

T M=)
plan) = J GJp(x)

dx

wisting

— using Castigliano’s theorem — the twisting angle ¢p of the point of action of a

couple Mg in the plane of its action equals
heore

OW | My(z) OMy(x) "

T oMy | GIp) oMy
Both of these relations are equivalent, the partial derivative TM & usually equals £1,

so that the results can differ in the sign only. The limit state of deformation is determined [imit state of
by the value of the twisting angle ,; inadmissible in operation, the safety factor related

. . . . . M
to this limit state can be calculated using the formula k, = L@max. Cafotv Tacto
The safety factor related to the yield limit can be calculated using the formula kx = |TT7K|

The yield stress in tension ok cannot be used here as the limit value, shear yield stress
must be used instead. In practice, this value is not measured but calculated from the
relation 7 = JTK based on the Tresca’s (max 7) plasticity criterion.

next
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12.9.2. Supported bar

The bearing of a bar under torsion is statically determinate, if rotations of the cross [Problem 50

section are restricted in one point of its centreline.
v oAl - N The free body diagram (for both of the presented
M~ M, A M; 7 'Mnf bars loaded only by couples M; in parallel planes,
A-mmtm - %\N\A/i— ------------- - the only non-zero gomponent of support reactions
is then the couple M) shows that there is only one
¥ ¥ 1\7[) 5 _‘)( applicable equation of static equilibrium
M M A, .
free body diagram _|-._._.|._._._] - Zszoz MA—ZMi:O
i=1
A v ¥

s=p—v=1—-1=0 = statically determinate
bearing.
All the other types of bearings of bars loaded in torsion are statically indeterminate.
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The solutions to supported bars loaded in torsion can be carried out according the algo-
rithm presented in the chapter 11.11.2. Supported beam. It must be, however, taken into
account that

— the moment equation related to the
x-axis y_ M, = 0 is the only one ap-

released structure

— —
plicable condition of static equilib- M7 2 Mmx A 1\7[
rium, &/ I . -y A- -1 __ A

— the compatibility equations are de- 4
termined by rotation angles of the ¥ v ¥
cross sections around the bar centre- " - >

Py A

line in such a number of points that / Mp” M )
equals to the degree of redundancy.  gWWp---1-~ ¥ Jpa=c M, L2 -1 /
The compatibility equations (sup- “ J/ /
port deformation conditions) can be [rad/Nm]

homogeneous, non-homogeneous or
circumstantial.
Note:

If the bearing of the bar consists of both rigid and flexible supports, a rigid support
should be preserved in released structure (then the body remains immovable as a whole)
and non-homogeneous compatibility equations should be formulated for flexible supports;
otherwise the bearing of the released structure would not be immovable and the problem
of how to distinguish between movements of the whole body and deformations should be
solved additionally. The compatibility equations are dependent on the load only, there is
usually no influence of temperature changes and production inaccuracies. If a significant
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change in temperature or length inaccuracy occurs at a statically indeterminate bar loaded
in torsion, a non-zero normal force occurs and the onefold loading of the bar is changed
in a combined loading (torsion + tension or compression).

— Also at bars under torsion the problems of stress distribution  IEroblem 502
notches must be taken into account, be- A in the section A-A  Prohlom 504

cause stress and strain concentrations occur

there. The extreme stress value in the notch -M Problem 506
root can be calculated using the formula
ex = Tny "
where

— « is a stress concentration factor evaluated from the graphs (nomograms) that have
been based on calculations (finite element method) or on experiments (photoelasti-
cimetry) for various shapes of notches,

— T, is the nominal stress in the notch location calculated using the theory of simple
torsion.

12.10. Examples and problems
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Examples

Problem 507
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Problems

Problem 501

Problem 502

Problem 506

Problem 503

Problem 504

Problem 505
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