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4. Stress state in a point of the body

Let’s assume that the point C is the dangerous point of the body, that means point with

maximum stress values and therefore with highest risk of failure; to avoid limit states of

the body, the stresses in this point must not exceed a certain limit value. The vector of

general stress f , acting on the elementary area dS with normal vector €, in the surrou-
ndings of the point C, characterises the stress values only in this section and bears no

information on stresses in the other elementary areas containing the C point but with

other orientations. To avoid limit states controlled by stress values, it is necessary that

stress values in any of the infinite number of elementary areas containing the point C be

lower than a certain stress limit. Only a complete set of general stresses in all these areas

describes the state of stress in the point C.

State of stress in a point of the body is a set of general stresses in all sections
containing this point.
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The question is how many sections (elementary areas) and how oriented are necessary for
unambiguous determination of the state of stress in the point C. It can be documented
by mathematical manipulations that components of general stress (i.e. normal and shear
stresses) in any elementary area containing the point C can be calculated from general
stresses in three perpendicular sections. It is usual to choose such a cartesian coordinate
system that its axes are lines of intersection of these three perpendicular planes. The
general stresses will be denoted by index corresponding to the normal line of the plane
in which the stress acts; e.g. general stress f: acts in the plane with normal line x, i.e. in
the coordinate plane yz. Each of the general stresses, the direction of which is inclined to
any of the coordinate axes, can be decomposed into components parallel to the axes of
the cartesian coordinate system using the following formulas:

f:)c ) +7—myj +Tzzk7
fg/ = Tyl + oyjﬁ—i— Tyz_l?,
fz = Tl + Tzy) + 02k7

where 0, (i = x, y, z) are normal stresses, 7;; (i, j = x, y, 2; i # j) are shear stresses; their first
subscript ¢ denotes the normal of the plane in which the stress is acting and the second
subscript j denotes the direction of the stress (in the case of normal stresses both subscripts
are identical and usually only one subscript is used).

These three general stresses can be organised in a conve- Or Taoy Taz
nient way into a square matrix which represents - in the To = | Tys Oy Tyz
chosen cartesian coordinate system - the stress tensor 7,: Tex Tay O

Stress state in a given point of the body is unambiguously determined by the stress
tensor T,.
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In the linear theory of elasticity, which is based on the assumption of small strains, not
all the components of the tensor 7T, are independent. It can be proven using momentum
equilibrium equations of the threefold infinitesimal element. If we isolate this element
as a free body, general stresses ﬁ act in its planar faces (identic with coordinate planes).
General stresses fz act in the opposite faces which are parallel to the coordinate planes.

Va2 Note to signs of stresses:
YT Oy fy In the figure, positive stresses are oriented accordingly to
o3 the positive (outer) normals of the sections. It means that
Ty K v r;yj) P positive stresses are oriented in the positive orientation of
ci Atk X the corresponding coordinate axes, if the normal of the
L Mg X_Zl_ = G;j plane in question is also positively oriented (i.e. in the
fy < -y C T, k planes parallel to coordinate planes). In opposite, in the
Tyl Al X planes with negatively oriented normals (i.e. identical
Tyd €777 i with coordinate planes), the orientation of positive

v £ Vo stresses is identic with the negative orientation of the
corresponding coordinate axes.

From the momentum equilibrium equations related to the point C (identical with the
centroid of the element) it can be obtained:

d d
S Mes = 0 | (b )y | 5 = | (b )dadz| S = 0 = (mayrly )= (rt ) =0

Because of lucidity, the stresses in the front and rear faces of the element (with normal z)
are not drawn in the figure. The resulting force of volumetric forces (e.g. gravity forces)
crosses the point C, so that its momentum to this point equals zero. Stresses in the opposite
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faces of the element are approximately equal, (it reads 7., — 7,, and 7,, — 7,,), therefore

it reads 7,, = 7,. Similarly, momentum equations for components of the momentum M¢
in directions x and y give formulas 7,, = 7., and 7,, = T.,.

This result can be interpreted as follows:

The components of the stress tensor 7, located symmetrically

to the principal diagonal of the matrix are identical. In other

words, the order of subscripts at shear stresses is not signifi- ‘ ‘
cant.

In general, this result can be rewritten by the following formula: 7;; = 7.

This formula is a mathematical expression for the theorem of shear stress equality and
can be formulated as follows:

Shear stresses on perpendicular faces of an element are equal in magnitude and have
directions such that both stresses point toward, or both point away from the line of
intersection of the faces.

As a consequence of this theorem, stress state in a point of the body is unambiguously
determined by six independent components of the stress tensor 7,, because this tensor
can be expressed by a symmetric square matrix.

Stress state in a point of the body is described by the stress tensor and depends
on the shape of the body, its loads and on the position of the investigated point in
the body. In some cases, the stress state can be influenced by material properties as
well.

Stress state of the body is a set of stress states in the individual points of the body.
It is determined by a tensor field, i.e. by a set of stress tensors in all the points of the
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body. It depends on the shape of the body and its loads, and, in some cases, it can be
influenced by material properties as well.

The stress state of the body is denoted as homogeneous if stress states in all the
points of the body are equal, i.e. if stress tensors in all the points of the body are identical.

4.1. Saint Venant’s principle

When solving practical problems, we usually do not know the real distribution of the area
forces acting on the body surface and we must replace them by a model of force
interaction with various degree of simplification (isolated force, couple of forces, constant
specific force per unit area etc.). This replacement evokes a basic question concerning the
applicability of the results in practice: how is the change of the stress state in the body if
the system of loads is substituted by another system of loads that acts in the same
region of the body surface and is statically equivalent to the original one.

It was proven by comprehensive analyses that difference
between the effects (stresses) of two different but
statically equivalent loads becomes negligible at a
distance at least equal to the largest dimension of the
loaded region.

reality model

supported
gdy Q
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The practical meaning of this principle for stress analyses of bodies and structures can be
illustrated in the following figures. If we draw the distribution of one stress component (e.g.
0.) along a straight line crossing the body, say for the real (reality R) load and for two
statically equivalent load substitutes (SE loads 1 and 2), the effect of the load substitution
will become insignificant in the distance larger than § from the loaded region with § the
dimension.

51

reality R~ SE load @ SE load @ > X

Oy |

These facts were at first formulated quite intuitively by Saint-Venant; at the actual level
of science, Saint-Venant’s principle can be expressed as follows:

If a real system of loads is substituted by another system of loads, which acts in the same
region of the body and is statically equivalent to the original one, the stresses in the
body caused by either of the two systems are the same, except of a volume in near
surroundings of the loaded region; the dimensions of this volume correspond to the
dimensions of the loaded region.
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Importance of Saint-Venant’s principle:
a) it enables us to use computational models of loads (vo-
lume and area forces) correctly % oy _\Ljr (;

b) it enables us to introduce computational models of contact be- / /
tween bodies correctly gﬁ %{J >/~LL

c) it proves incorrectness of some
substitutes (commonly used in
statics) for stress analyses

real body model for solving model for solving
with supports static equilibrium stresses (and strains)

Any substitution in stress analysis should be, in addition to the static equivalence, evalua-
ted in accordance with the Saint-Venant’s principle. The acceptability of the substitution,
however, depends on the limit states significant for the body in question.

In general, the substitution of a system of loads by another one a)

is always acceptable, if the region (g where the substitution

of loads was carried out, is quite different from the region €2, @
where limit states are expected. If these two regions have some

common points the substitution is acceptable only in some @
special cases as described below.
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If the regions 25 and {2); has some common part, the substitution is acceptable under
the following conditions:

— The region 2¢ where the substitution is reality computational model
carried out is relatively small in compa- (for a<l)
rison with the body. N

— The risk of failure is rather higher in the F i

A Z

mi—)m
=
)

body loaded by the substitutive system
of loads than under the real loads.
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