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17. Fundamentals of theory of limit states

At the beginning of this chapter, let’s try to define the objectives of the theory of limit
states. Most students, and engineers as well, identify all the mechanics of materials with
the stress-strain analysis, i.e. calculation of stresses and strains in the bodies under load.
The extreme calculated stresses (or deformations) can then be compared with the corre-
sponding limiting values (yield stress, strength, ultimate stress, fatigue strength etc.), so
where is the need of the scientific branch called theory of limit states?

We will show the reasons using an example of multiaxial state of stress. The simple procedure
described above is namely sufficient only in the case that the state of stress (if the stress
is the quantity decisive for the occurrence of the limit state in question, e.g. for plastic
deformation or fracture) is defined only by a single non-zero component of the stress

tensor T,,. In the case of a uniaxial or shear (in plane) stress states, the evaluation of the
risk of the limit state of elasticity is really as simple; in fact, students in the bachelors
degree have not exercized any more complex stress states in their practical computations.
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However, the risk evaluation of the limit state is not so easy in the case of a more com-
plex stress state, e.g. when there is a bar-type state of stress (defined by normal ¢ and shear
7 components of stresses in the bar cross section) in the body in question. Try to answer
the following question, very easy at first sight, concerning the illuminating example be-
low: which of the stress states 1 and 2 (defined by the stress tensors T,, and T, in the
dangerous point of the body) is more dangerous, i.e. in which of them there is a higher
risk of failure (loss of the body functionality)?

50 50 0 70 40 0
T,,=|5 0 0 T, =| 40 0 0
0 0 0 0 0 0

The answer is not unambiguous, it depends on the type of material behaviour. The influ-
ence of the normal stress is higher at a brittle material, so that the risk of failure (brittle
fracture) will be higher in the case 2, while the influence of the shear stress component
will be higher at a ductile material (i.e. the stress state T,, will bring a higher risk of
plastic deformations of the body). The evaluation of a general stress state defined by six
non-zero components of the stress tensor is even more complex; some of the stress com-
ponents can increase, some others can decrease or remain unchanged between any two
of the operational states of the body. E.g., if you should to judge the right front wheel
axle of a vehicle, what of the possible operational states is the most dangerous, breaking,
going through a sharp left curve or passing a pot-hole in the roadway? In all of these
examples, the load of the wheel, axis or all the vehicle gear is quite different. Even the
trivial question whether the transition from the above stress state 1 to the stress state 2
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can be called loading or unloading is not easy to be answered. The generally valid answer
can be formulated as follows:

The process of change of the stress-strain state in the body can be called loading, if there
is a higher risk of a certain limit state (failure) in the final stress state than it was in the
initial state. An inverse process is called unloading.

It is evident from the above facts that it is necessary to find a procedure of how to evaluate
the risk of limit states (failure) if the decisive quantity shows a tensor character, i.e. it
is defined by more independent components. Formulation of such procedures (so called
limit state criteria) is the objective of this chapter and of the theory of limit states as a
scientific branch.
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17.1. Factor of safety

The ability of the structure to perform the intended operational functions under normal
and some extraordinary (e.g. pressure test of a vessel) conditions is called reliability of
the structure. The reliability is required to be quantified, i .e. we need to e valuate how
large the changes of the quantities influencing the limit state occurrence can be until a
failure occurs. As any of the measured or calculated quantities is stochastic, we cannot
allow states near the limit state in the operation of the structure; there must be a margin
called safety. To evaluate this safety, we need to find a physical quantity

decisive for the limit state occurrence (e.g. normal, shear or reduced stresses, force,
deflection, number of load cycles etc.). For this quantity, the factor of safety (called more
precisely simple factor of safety) relating to the limit state in question is defined by the
following general relation:

_ Qy
k=G,

where «); is the limiting value and ap is the operational value of the decisive quantity «.
In practice, the value of factor of safety must be £ > 1. If it holds k£ = 1, the correspond-
ing limit state occurs. For the particular limit states we can define
Ulimiting
Umax o = yield stress Ok

the factor of safety against { limit state of elasticity K™ working stress ~ Opmax
strength in tension _ Opy

limit state of deformation kp =

limit state of brittle fracture kg = -
working stress Omax

The above relations are valid if and only if the limit state is unambiguously defined by a
single component of the decisive quantity (i.e for example in the case of a uniaxial stress

state).
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To evaluate the factor of safety (risk of failure), we need some
failure criteria — theory of limit states (failures).

Plasticity criteria (Tresca, Mises) are based on shear stresses
(explanation in the figure below), while fracture (crack propagation) is
more dependent on normal components of stresses.
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17.2. Limit state of elasticity

Till now, we dealt with a bar, i.e. a model body loaded in tension (compression), torsion or
flection. In the simple tension (compression) or flection, a uniaxial stress state occured in
the bar, while pure shear occured in the bar under torsion. We solved stresses and
deformations for these types of loads and we met limit states of deformation and elasticity
(yield) when solving these tasks.

We calculated the factor of safety against yield using the relations

. . OK . TK OK
for tension and flection ki = , for torsion ki = = )
Umax Tmax 27—max

The combined load of bars requires a description of limit states under conditions of bar-type
state of stress (a particular case of biaxial stress state), other models (analytical or nume-
rical) can result in even more complex stress states in dangerous points. The simplest
level of description of the limit state of elasticity requires under conditions of a multiaxial
stress state:
— monotonously increasing loads (plasticity criteria do not hold for cyclic loa-ding),
— isotropic material from the viewpoint of yield stress (plasticity criteria do not depend
on the directions of the stresses),
— uniparametric limit state (the limit state of elasticity is described by a single mate-
rial characteristic, yield stress oy, which has the same magnitude in tension and in
compression).
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If we need to judge the risk of the limit state of elasticity (in the case of a multiaxial
stress state), we need to formulate a general plasticity criterion (i.e. a mathematical
description of the limit state of elasticity), and to know the limit value corresponding to
this limit state (i.e. the yield stress — a material characteristic).

In the case of a uniaxial stress state, the relation ¢ = o can be denoted as the plasticity
criterion; it can be expressed in the following general form:

F(o) = ok, where F' is a function of a single variable ¢ in this case.

The plasticity criterion for a triaxial stress state must be a function of the stress
tensor T, i.e. a function of the six independent stress components

F(Tcr) = F(Umao'yao'zaTmyaTyzaTrZ> = 0K-

It is advantageous to represent the plasticity crite- limi

. . . . 1mit state
rion in the so called Haigh space; the coordinate trajectory
axes of this space are identical with the principal of loading
axes of the stress state. In this space, the plasticity \
criterion is represented by a surface of plasticity,
the loading process is represented by a curve — tra-
jectory of loading. The limit state of elasticity
occurs when the trajectory of loading intersects the o3 X of plasticity
limiting surface of plasticity (plasticity envelope).
Comprehensive experiments carried out during dozens of years resulted in the conclusion
that a shear stress |7,, | in a certain section pg is the quantity decisive for the occurrence
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of the limit state of elasticity; the plasticity criterion can be then formulated as follows:
F(|1,,|) = Mk (where M is a material characteristic).

A most simple function F' which can be used in practice as plasticity criterion is a linear
function; the corresponding plasticity criterion can be expressed in the form

F(|1o]) = 1Tpk | = Tmk, where T)/k is a material characteristic.

The section pg was chosen on the basis of experimental experience; we can obtain various
plasticity criteria in dependence on the choice of the relevant section.

17.2.1. Tresca’s plasticity criterion (max 7)

The plasticity criterion based on the maximum shear stress assumes the section in which
the maximum shear stress 7. acts to be the decisive section pg; therefore the criterion
can be formulated in the form

Tmax — TMK

The limit state of elasticity comes into existence under conditions of monotonous loading
of material in basic structural state (with the beginnning of loading in a stress-free
state) if the maximum shear stress reaches its limiting value 75, which is a material
characteristic.
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For a general stress state:

general stress state uniaxial stress state
01 — 03 Tp - Tp -
Tmax = = TMK _ 01763 _ %1
2 Tmax™ 2 Tmax™ 2
For a uniaxial stress state: C3 Op I$7) Sph G,=03 57} Sp
01 OK
Tmax = ? = 9 = TMK,

because 05 = 03 = 0 and in the limit state of elasticity o; = ok.

Our objective is to judge the risk of occurrence of the limit state under conditions of
multiaxial stress states on the basis of experiments carried out in uniaxial stress state
only (tension test); by comparing both types of stress states we obtain:

01— 03 OK

TMK = 5 = 5 = ’0'1—0'320'[(
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By introducing the reduced stress

’Uredzo—l_o—?n

we can obtain the form similar to the uniaxial stress state o,.q = 0x and we can calculate

the factor of safety using the following formula

g
kp = £ |.
K Ored

Reduced stress 0,4
is a fictitious value of a uniaxial tensional stress giving the equal factor of safety udged limif]
against the judged limit state with the multiaxial stress state in question. state

Note: the reduced stress is also called equivalent stress or stress intensity.

Evaluation of risk of failure using the reduced stress is then the same as in the case of
the uniaxial stress state:

Oreqd < 0 — material is in elastic state,
0red = 0 — the limit state of elasticity is reached,
Oreqd > Ok — material is in plastic state in the point in question.

The above general form of the Tresca’s plasticity criterion max 7 is valid for any stress
state, it is however necessary to calculate all the three principal stresses. For some par- [principal
ticular types of stress states (uniaxial stress state in bars loaded in tension, compression ftres

or flection, pure shear stress in bars loaded in torsion, bar-type state of stress in bars under
combined load), the Tresca’s plasticity criterion max 7 or the formula for reduced stress can
be simplified in the following forms:
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1) Uniaxial state of stress a) b)
a) tensional T, T
oy =0 >0, 02203:():> S o,
0,=03 o1 o3 G1=C%
b) compressional o3 =0<0, o01=0=0 =||0| =0k Ored = | 0|
2) Pure shear stress . T, Khear  stres
Statd
0L =—03=T o9 =10 T G
¢" 03 62 61
op—03=7—(—T) =0 = 2T =0k
in the limit state of elasticity 7 = 7, = |7 = UTK (Tk ... yield shear stress)
3) Bar-type state of stress T,
-7
2 2
o o o o T
01:4—\/() +72 0y=0 o03=_—-— <) + 72 TP o4 N
2 2 2 2 N2/ 6; Jo1 5
® . X P
y¥xX
N

By substitution in the plasticity criterion we obtain
2 2
01—032%4—\/(%) +T2—%+\/(%> + 72 =|Vo?+412 =0k | |Opea = V02 + 472
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17.2.2. Mises’ plasticity criterion (HMH)

Von Mises’ plasticity criterion (the abbreviation HMH is based on initials of all the three

authors of this criterion - Hencky, von Mises and Huber) assumes the octahedric section to
be the decisive section py ; therefore the criterion can be formulated in the form plane

‘Tol = ToK

The limit state of elasticity comes into existence under conditions of monotonous loading
of material in basic structural state (with loading beginning in a stress-free state) if the
shear stress in the octahedric plane reaches its limiting value 7,5 which is a material

characteristic.
The shear stress in the octahedric plane (octahedric shear stress) can be calculated for a

general stress state using the formula:

1
To = g\/(O'l — 0'2)2 -+ (0'2 — 0'3)2 + (0'1 — 0'3)2.

For the uniaxial stress state (017 = 0,09 = 03 = 0) it holds: ]

2 2
7—0:\2_\/02 = ToK = ToK:\g_UK-

Our objective is to judge the risk of occurrence of the limit state under conditions of
multiaxial stress states (for which material tests cannot be carried out) on the basis
of experiments carried out in uniaxial stress state only, i.e. tension tests; yield stress is
measured among other quantities in this tests. The Mises’ criterion is based on comparison of
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octahedric shear stresses 7,in both types of stress states. By comparison of the octahedric
shear stresses in the general and uniaxial stress states we obtain

1 \/§

g\/(O’l — 0'2)2 -+ (0'2 — 0'3)2 —+ (0'1 — 0'3)2 = ?O'K

The Mises’ plasticity criterion for the general stress state defined by principal stresses
01, 09,03 can then be written in the following form:

\/; [(0’1 — 02)2 + (0'2 — 0’3)2 + (0’1 — 03)2} = 0K

If we introduce the reduced stress in the way similar to Tresca’s plasticity criterion

presented above Ored = \/% [(01 — 02)2 + (o9 — 03)2 + (01 — 03)2]

the plasticity criterion can be simplified into the form o,.4 = 0 and we can calculate the
factor of safety using the same formula as in the case of Tresca’s plasticity criterion

%
ke = £ 1.
K Ored

An important advantage of the Mises’ plasticity criterion is the fact that it can be derived
in the form based on the stress components in any general coordinate system, namely in
the following form:

Ored = \/; {(aw —0,)’ 4 (0, —0.)* + (0, — 0.)* +6 (Tgy + 72, + ng)}
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1) Uniaxial state of stress

a) tensional a) b)
op=0>0, op=03=0 = T To
p
1 (2 +02) =0 = [0=0 h p /\IGE
2 62703 01 G3 G1=02
b) compressional o03=0<0, 01=0y=0 =||0| =0k Ored = | 0|

2) Pure shear stress

- Tp shear  stres
statd
0L =—03=T o9 =10 T G

1 4 G3 (o)} G
Ored = \/2 124724+ (272 =0 = V3r=o0g
in the limit state of elasticity 7 = 7 = |7 = % Ored = /3T

(Tk . . . yield shear stress based on Mises’ plasticity criterion)
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3) Bar-type state of stress Tp bar-type state o
- T
0y =0#0; 7y =7#0;0p=0,=0; 7, =7, = 0. Ao Tey
o3 S
. . ) A\ C
These values can be directly substituted into the L T W Ox Jo10
. . . yX
relation for the reduced stress in a general coordinate \

system and we obtain

1
Ored = \/2 [(ax —0,) + (0, —0.)" + (0, — 0.)° + 6 (Tﬁy + 72+ T%Z)] = 0%+ 372

The Mises’ plasticity condition valid for a bar-type state of stress is: ox = Vo?+ 372

Both of the presented plasticity criteria are equivalent in practical use. In analytical

calculations, Tresca’s plasticity condition max 7is often used because of its simpler form.

Before using this condition, however, it is necessary to calculate the principal stresses and
to order them in the decreasing sequence ( o3 > 09 > 03), because one of the principal
stresses (0y) absents in the used formula. The formula expressing Mises’ criterion is more

complicated but this is no problem in computer solutions where it is used more frequently.

Its advantage is that it was derived in the form based on the stress components in a general

coordinate system so that it does not require knowledge of the principal stresses.
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17.3. Brittle fracture — failure of a body without any macroscopic crack

Brittle strength = a special case of brittle fracture with monotonically
increasing load of the body.

Brittle fracture: € < 0.001
Quasi-brittle
Quasi-ductile
Ductile fracture: € > 0.05

Factors influencing the magnitude of plastic deformation
until fracture (brittle or ductile material behaviour):

Hrevious

Temperature — lower temperature means more brittle behaviour.
Deformation speed — faster load means less plastic deformation,
i.e. more brittle behaviour.

Stress state — more triaxial stress means more brittle behaviour.
Corrosion

Radiation (x- or gamma-radiation)
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How to avoid brittle fracture?

Choice of material with transition temperature of brittle fracture being below the
operating temperatures

Production technology - without macroscopic cracks
Avoid impact loading

Reduce stress concentration in notches, corrosion and radiation

Summary of experimental results — internal factors influencing the occurrence of brittle
fracture in a given material are as follows:

Spherical part of the stress tensor (hydrostatic stress)
Sign of principal stresses — positive values are more dangerous
Occurrence of some small plastic deformation

Magnitude of shear stress Tp and of normal stress 6p in a certain
characteristic section p.

For a multiaxial stress state, the failure is described by criteria of brittle fracture,
which can be valid if

brevious

there is no initial macroscopic crack in the body
the load is monotonically increasing

initiation and propagation of the crack are instantaneously followed by
fracture - fast fracture process

the crack propagation in unstable and cannot be influenced by any changes in
loads

the stress state is homogeneous - otherwise an approximate validity only, because
the conditions are changing during the crack propagation
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Mathematical description of criteria of brittle fracture:

e Maximum principal stress criterion
The occurrence of the brittle fracture under the above conditions is given by the value of
maximum principal stress of the respective stress state:

o, =R,
where Rm means ultimate stress (strength) in tension.

This criterion is valid (corresponds to experimental results) only if all the three principal
stress values are positive (multiaxial tension).

e Mohr’s criterion

The occurrence of the brittle fracture under the above conditions is given by the values of
normal and shear stresses in the section, in which the maximum shear stress is acting.
Mathematical formulation of this criterion can be expressed in the following shape:

Rm

O, — GSZRm or Gl_)(O-BZRm
mC
where Rm and Rm(C mean ultimate stresses (strengths) in tension and in

compression, respectively. Their ratio x meets always the inequality y < 1.

This criterion is valid (corresponds to experimental results) only if at least one of the three
principal stress values is negative.
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e MOS criterion

This criterion is the only one, which is valid generally, independently of the stress state type
and the signs of the stresses. It represents a combination of the previous two criteria and can
be formulated mathematically as follows:

max {0-1;0-1 _750'3} =R,

To avoid brittle fracture, a corresponding inequality must be met:

max {61;01_7(53}< Rn
To quantify the margin of safety against the brittle fracture, reduced stress can be
introduced (similarly to plasticity criteria) by the following formula:

O reamos — Max {0'1;0'1 _ZGS}

The reduced stress (a simplification of stress tensor valid under the specified conditions only)
can be applied for calculation of the simple factor of safety (FOS) under multiaxial stress
states using the formula: R

FOS = ko = — "
O redmos
As materials in brittle state do not offer any margin of safety due to no plastic deformation (in

opposite to materials in ductile state), the recommended range of the factor of safety against
brittle fracture is much higher (3+10).

Note: Reduced stress ored is a fictitious value of a uniaxial tension stress giving the same factor
of safety against the judged limit state with the multiaxial stress state in question. As it simplifies
the tensor into one numerical value only, it can be valid for a certain failure criterion only (and
for one type of failure, particularly here for MOS criterion of brittle fracture) and it is necessary
to distinguish between various types of reduced stresses.
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Graphical representation of the criteria of brittle fracture:

Maximum principal stress criterion:

Haigh space

16‘2

revious

Biaxial stress state

Q)
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Mohr’s criterion:

Obr.139

Hrevious
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“6; o, =R
27 '"'m
\ % R, 7

o, - xo1 =R, .
61: m

= —

Gy

Gl = RmC
] o, — Y0, =R,
RmC
0, =Ryc b)
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17.4. General and simple factor of safety

In the previous paragraphs, we introduced the factor of safety in the form

OK

ki =

Ored

as a quantity which quantifies the safety against yield stress ox. However, the influence of the
particular stress components on the reduced stress is different, so that this factor of safety can
correctly evaluate the safety only if the increase of all the stress components during loading
and overloading is mutually proportional. Such a way of loading is graphically (e.g. in Haigh
stress space) represented by a straight line and it is called simple loading and overloading. [Haigh space

The factor of safety valid for the simple loading is called simple factor of safety and it can be
calculated using the reduced stress. If the stress components are not mutually proportional
(e.g. the increase of torque is not proportional to the increase of bending moment and
therefore also increase of shear stress T is not proportional to the increase of normal stress o),
the reduced stress cannot be used; under these conditions, the general factor of safety should be
evaluated which takes the trajectory of loading and overloading into account.
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