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16. Mathematical description of stress state

The stress state in a point of a body was defined as a set of general stresses in all sections  stress state
containing this point. For an unambiguous numerical determination of the stress state it is 
sufficient to know the components of general stresses in three mutually perpendicular sections, 
which can be suitably ordered in a square matrix describing a stress tensor Tσ:

Tσ =

 σx τxy τxz

τyx σy τyz

τzx τzy σz


With respect to the symmetry of this tensor which is based on the assumption of small
strains and shear stress equality theorem (τij = τji), only six of the stress tensor compo- equality τ
nents are independent, i.e. three normal (σx, σy, σz) and three shear (τxy, τxz, τyz) stresses.

16.1. Principal coordinate system

First we mention an important property of all tensors, namely existence of a principal
coordinate system in which the out-of-diagonal components of the tensor equal zero. principal c.s.
The coordinate planes of the principal coordinate system are called principal planes.
Thus no shear stresses (τij = 0) but only normal stresses act in the principal planes of a
stress tensor. We call them principal stresses and denote them by numerical subscripts
according to the convention σ1 ≥ σ2 ≥ σ3.
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The stress tensor Tσ in the principal coordinate system has the following form:

Tσ =

 σ1 0 0
0 σ2 0
0 0 σ3


Principal stress is normal stress in such a plane in which the shear stresses equal zero
(i.e. general stress in the section is perpendicular to this section (~fρ = ~σρ)).

general stress

Principal stresses σi(i = (1, 2, 3)) can be calculated from the known components of the 
stress tensor Tσ  determined in any general coordinate system; we calculate them by solving 
the characteristic equation of the stress tensor [1]:

σ3i − I1σ
2
i + I2σi − I3 = 0,

where I1, I2, I3 are invariants of the stress tensor determined by the following formulas:

I1 = σx + σy + σz, I2 = σxσy + σyσz + σxσz − τ 2xy − τ 2yz − τ 2xz, I3 =

∣∣∣∣∣∣∣
σx τxy τxz

τyx σy τyz

τzx τzy σz

∣∣∣∣∣∣∣
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If we need to calculate stresses f~ρ, σρ and τρ in a general 
plane from the known principal stresses, in is advantage-
ous to isolate an elementary tetrahedron with three faces 
in principal planes as a free body. There are three princi-
pal stresses σ1, σ2, σ3 acting in the principal planes. The 
section ρ is defined by the base vector of the normal line ~eρ, 
the components of which in the principal coordinate system 
are denoted as α1, α2, α3 (αi – direction cosines of the nor-
mal of the plane ρ). From the static equilibrium equations 
of the element we obtain - after neglecting volumetric forces
- the following relations for components of general stress in the section ρ:

fρ1 = σ1α1, fρ2 = σ2α2, fρ3 = σ3α3

We can simplify them by transcription in a matrix form:

fρ = Tσ · α,

 fρ1

fρ2

fρ3

 =
 σ1 0 0
0 σ2 0
0 0 σ3

 ·
 α1

α2
α3


Magnitude of the general stress can be calculated using the following relation for magnitude
of a vector:

fρ =
√

f 2ρ1 + f 2ρ2 + f 2ρ3 =
√

σ21α
2
1 + σ22α

2
2 + σ23α

2
3

To predict the risk of limit states (failure), we often need to know the normal (~σρ) and
shear (~τρ) components of the general stress ~fρ.
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Magnitude of the normal stress can be calculated as a projection of the general stress fρ 
into the normal direction of the plane ρ:

σρ = ~fρ · ~eρ = σ1α
2
1 + σ2α

2
2 + σ3α

2
3

Determination of the shear stress would be more complex in this way because we do not 
know the direction in the plane ρ in which the shear stress acts. The direction of the shear 
stress, however, is not significant in analysis of limit states at isotropic materials. Therefore 
we can calculate only the magnitude of the shear stress using Pythagoras’ formula (see figure 
at the previous page)

 (see figure)

τρ =
√

f 2ρ − σ2ρ,

into which we substitute the calculated magnitudes of stresses fρ and σρ.
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16.3. Stresses in octahedric plane

o

Among the various sections ρ passing    the investigated (dangerous) point, the octahedric 
plane is one of the most important from the viewpoint of limit states prediction; the 
normal of this plane forms the same angles α′ with all the principal axes 1, 2, 3, so that 
all the three direction cosines αo are also equal:

α1 = α2 = α3 = αo, α21 + α22 + α23 = 3α
2
o = 1, ⇒ αo =

1√
3

The von Mises (HMH) plasticity condition is just based on shear stress in this plane.    HMH  
The magnitudes of the general, normal and shear stresses in the octahedric plane can 
be calculated by substituting the direction cosines of the octahedric plane into the
relations for stresses in a general section ρ: stress in ρ

fo =

√
1
3
(σ21 + σ22 + σ23) σo =

1
3
(σ1 + σ2 + σ3)

τo =
√

f 2o − σ2o =
1
3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2

previous CONTENT next

containing



p16 – 6

16.4. Graphical representation of stress state

In this chapter we introduce another important property of tensors which is the possibi-
lity of their graphical representation; it is carried out in the Mohr’s plane where diagonal
components of the tensor (i.e. components on the principal diagonal of the matrix repre-
senting the tensor) are represented as abscissa (horizontal coordinate – normal stresses in
the case of a stress tensor) and out-of-diagonal components are represented as ordinate
(vertical coordinate - shear stresses in the case of a stress tensor).

Uniaxial stress state was represented in this way
in the chapter concerning simple tension and shear
stress state was represented in the chapter concer-
ning simple torsion. As it is evident from the fi-
gure, the radius vector of a point in the Mohr’s
plane of stresses determines the general stress fρ

in the given section ρ, defined by the components
σρ and τρ.

tension

torsion
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The following statement was proven in literature (e.g. in [1]).

If the stress state in a point of the body is determined by principal stresses σ1, σ2, σ3, the 
points representing the general stresses fρ (ρ is any plane containing the investigated 
point) lie in the hatched region of the Mohr’s plane among the three Mohr’s circles 
including the boundary.

The hatched region in the figure including also 
all the three boundary circles represents thus the 
stress state in the point of the body.
Principal stresses σ1 and σ3 are the extreme nor-
mal stresses in the point of the body, extreme 
shear stresses are

τmax =
σ1 − σ3
2

= −τmin

and they act in those sections where normal stress
equals σρτmax =

σ1 + σ3
2

stress state

16.5. Specific types of stress states

In the previous chapters, we analyzed stress states in which the principal stresses were
mutually different and all of them had a non-zero magnitude, i.e. σ1 6= σ2 6= σ3 6= 0.
However, we often meet cases in which some of the principal stresses are zero or mutually
equal. The Mohr’s representation offers us a fast and illuminating idea on the stress state,
incl. the extreme components of stresses.
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16.5.1. Triaxial stress state

1) general

σ1 6= σ2 6= σ3 6= 0

2) half-uniform

a) σ1 = σ2 6= 0, σ3 6= 0

b) σ2 = σ3 6= 0, σ1 6= 0
3) uniform

σ1 = σ2 = σ3 = σ

In the case of the uniform triaxial stress state, there is no shear stress in any section. plasticity 
Therefore limit state of elasticity cannot occur under the condition of this stress state; it criterion 
is evident from the plasticity criteria which are based on some shear stress component in 
all cases.
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16.5.2. Biaxial (plane) stress state

one of the principal stresses equals zero

1) general

a) σ3 = 0, σ1 6= σ2 6= 0

b) σ2 = 0, σ1 6= σ3 6= 0

c) σ1 = 0, σ2 6= σ3 6= 0
2) uniform (equibiaxial stress)

a) σ3 = 0, σ1 = σ2 6= 0

b) σ1 = 0, σ2 = σ3 6= 0
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3) bar-type

This type of stress state can be found in all bars
(i.e. rod-like bodies, e.g. columns, beams, shafts etc.),
therefore we analyze it now in greater detail. This stress
state is determined by normal and shear stress compo-
nents in the cross section of the bar

σx = σ 6= 0, τxy = τ 6= 0,

strain
assumptions

while all the other components of the stress tensor equal zero. Let’s substitute this stress
components into the characteristic equation of the stress tensor to calculate the principal
stresses which will be necessary for prediction of limit states (failures):

σ3i − I1σ
2
i + I2σi − I3 = 0

I1 = σx + σy + σz = σ I2 = σxσy + σyσz + σxσz − τ 2xy − τ 2yz − τ 2xz = −τ 2

I3 =

∣∣∣∣∣∣∣
σx τxy τxz

τyx σy τyz

τzx τzy σz

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣

σ τ 0
τ 0 0
0 0 0

∣∣∣∣∣∣∣ = 0
σ3− I1σ

2+ I2σ− I3 = 0 ⇒ σ(σ2− I1σ+ I2) = 0 ⇒ σI = 0, σII,III =
I1
2
±

√(
I1
2

)2
− I2

after substituting I1 = σ and I2 = −τ 2 we obtain

σ1 =
σ

2
+

√(
σ

2

)2
+ τ 2, σ2 = 0, σ3 =

σ

2
−

√(
σ

2

)2
+ τ 2.

As the square root expressing the radius of the Mohr’s circle is always positive, it reads
σ1 ≥ 0 and σ3 ≤ 0, so that the calculated stresses meet the relation σ1 ≥ σ2 ≥ σ3.
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4) pure shear
It is a special case of the plane or bar-type stress states for all 
the normal stresses are zero σi = σ = 0. Then it reads for principal 
stresses

σ1 = −σ3 = τ, σ2 = 0.

This type of stress state occurs e.g. in bars under simple
torsion.

torsion

16.5.3. Uniaxial stress state

Two of the principal stresses equal zero

a) tensile σ1 > 0, σ2 = σ3 = 0

b) compressive σ3 < 0, σ1 = σ2 = 0

16.5.4. Zero stress (stress-free) state

σ1 = σ2 = σ3 = 0
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