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Back to
problemAnalysis: The bar is straight, supported and loaded in compression, the problem is

three-dimensional. As the external force ~F acts in the bar centreline, the reactions in the
top support are zero. The limit state of buckling can occur, if the length of the bar is
substantially higher than the dimensions of the cross section.
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It is required that the safety factor against buckling in the directions of both of the
principal central axes be the same; therefore both the critical forces must be equal in
magnitude:
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b) Under compression, limit states of elasticity or buckling can occur. As the geometrical
parameters of the cross section are not defined, two cases can come into existence:

Buckling in the plane (xy) ⇒ J2 = Jz = ab3
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Buckling in the plane (xz) ⇒ J2 = Jy = a3b
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The safety factor will equal the minimum of all the safety factor values calculated for the
defined geometry of the bar.
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