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problemClassification of the bar: straight, loaded by external forces, supported.

Statical analysis: µ = 3, ν = 3 (a general in-plane system of forces)
s = µ− ν = 3− 3 = 0 analysis

Now we usually isolate the bar as a free body and calculate the
reactions in supports. The bar in question, however, has a free
end, so that we need not to calculate the reactions; we can isolate
elements containing this free end. We divide the bar into three
intervals, namely in the points where external forces or couples
are acting on the bar.
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Integral approach: integral
approachInner resultants in the interval I: x ∈ (0; a)

Fx : N(x) = 0,
Fz : T (x) = −F1
My: Mo(x)= −F1x

Inner resultants in the interval II: x ∈ (a; a+ b)
Fx : N(x) = 0,
Fz : T (x) = −F1 − F2,
My: Mo(x)= −F1x− F2(x− a),

Inner resultants in the interval III: x ∈ (a+ b; l)
Fx : N(x) = 0,
Fz : T (x) = −F1 − F2,
My: Mo(x)= −F1x− F2(x− a) +M.
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Differential approach: differential
approach

Graphical representation of the distribution of components of inner resultants:

Shear force:
I. interval: constant shear force T (x) = −F1
II. interval: shear force F2 increased → T (x) = −(F1 + F2)
III. interval: without changes in forces → T (x) = −(F1 + F2)

There is no distributed load in all the intervals qT (x) = 0 :
dT (x)
dx = −qT (x) = 0→ T (x) parallel to the x axis.

Bending moment: rules

I. interval: T (x) = const.→ dMo(x)
dx = T (x) = const.→ linear function of Mo(x).

T (x) < 0 → function Mo(x) is decreasing with zero value in the end of the bar,
because there is no couple acting upon this end.

II. interval: T (x) = const.→ function Mo(x) is linear decreasing again but with a higher
slope.

III. interval: there is a stepwise change in the location of the couple. Shear force is constant
and of the same value as in the 2nd interval so that the representation of Mo(x) is a
straight line parallel to that valid for the 2nd interval.
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