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4. Stress state in a point of the body

Let’s assume that the point C is the dangerous point of the body, that means point with
maximum stress values and therefore with highest risk of failure; to avoid limit states of
the body, the stresses in this point must not exceed a certain limit value. The vector of
general stress f~, acting on the elementary area dS with normal vector ~en, in the surrou-  general stress
ndings of the point C, characterises the stress values only in this section and bears no 
information on stresses in the other elementary areas containing the C point but with 
other orientations. To avoid limit states controlled by stress values, it is necessary that 
stress values in any of the infinite number of elementary areas containing the point C be 
lower than a certain stress limit. Only a complete set of general stresses in all these areas 
describes the state of stress in the point C.

State of stress in a point of the body is a set of general stresses in all sections 
containing this point.

CONTENT next



p04 – 2

The question is how many sections (elementary areas) and how oriented are necessary for 
unambiguous determination of the state of stress in the point C. It can be documented 
by mathematical manipulations that components of general stress (i.e. normal and shear 
stresses) in any elementary area containing the point C can be calculated from general 
stresses in three perpendicular sections. It is usual to choose such a cartesian coordinate 
system that its axes are lines of intersection of these three perpendicular planes. The 
general stresses will be denoted by index corresponding to the normal line of the plane 
in which the stress acts; e.g. general stress     acts in the plane with normal line x, i.e. in 
the coordinate plane yz. Each of the general stresses, the direction of which is inclined to 
any of the coordinate axes, can be decomposed into components parallel to the axes of 
the cartesian coordinate system using the following formulas:

~fx = σx
~i + τxy

~j + τxz
~k,

~fy = τyx
~i + σy

~j + τyz
~k,

~fz = τzx
~i + τzy

~j + σz
~k,

where σi (i = x, y, z) are normal stresses, τij (i, j = x, y, z; i 6= j) are shear stresses; their first 
subscript i denotes the normal of the plane in which the stress is acting and the second 
subscript j denotes the direction of the stress (in the case of normal stresses both subscripts 
are identical and usually only one subscript is used).
These three general stresses can be organised in a conve-
nient way into a square matrix which represents - in the
chosen cartesian coordinate system - the stress tensor Tσ:

Tσ =

 σx τxy τxz

τyx σy τyz

τzx τzy σz

 Explanation

Stress state in a given point of the body is unambiguously determined by the stress
tensor Tσ.
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In the linear theory of elasticity, which is based on the assumption of small strains, not 
all the components of the tensor Tσ are independent. It can be proven using momentum 
equilibrium equations of the threefold infinitesimal element. If we isolate this element 
as a free body, general stresses   act in its planar faces (identic with coordinate planes).
General stresses ~f ′

i act in the opposite faces which are parallel to the coordinate planes.

Note to signs of stresses:
In the figure, positive stresses are oriented accordingly to 
the positive (outer) normals of the sections. It means that 
positive stresses are oriented in the positive orientation of 
the corresponding coordinate axes, if the normal of the 
plane in question is also positively oriented (i.e. in the 
planes parallel to coordinate planes). In opposite, in the 
planes with negatively oriented normals (i.e. identical 
with coordinate planes), the orientation of positive 
stresses is identic with the negative orientation of the 
corresponding coordinate axes.

From the momentum equilibrium equations related to the point C (identical with the 
centroid of the element) it can be obtained:

∑
MCz = 0 :

[
(τxy+τ ′

xy)dydz
]dx
2
−

[
(τyx+τ ′

yx)dxdz
]dy
2
= 0 ⇒ (τxy+τ ′

xy)−(τyx+τ ′
yx) = 0.

Because of lucidity, the stresses in the front and rear faces of the element (with normal z) 
are not drawn in the figure. The resulting force of volumetric forces (e.g. gravity forces) 
crosses the point C, so that its momentum to this point equals zero. Stresses in the opposite
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faces of the element are approximately equal, (it reads τxy → τ ′
xy and τyx → τ ′

yx), therefore

it reads τxy = τyx. Similarly, momentum equations for components of the momentum ~MC

in directions x and y give formulas τyz = τzy and τxz = τzx.

This result can be interpreted as follows:
The components of the stress tensor Tσ located symmetrically
to the principal diagonal of the matrix are identical. In other
words, the order of subscripts at shear stresses is not signifi-
cant.
In general, this result can be rewritten by the following formula: τij = τji.
This formula is a mathematical expression for the theorem of shear stress equality and
can be formulated as follows:

Shear stresses on perpendicular faces of an element are equal in magnitude and have
directions such that both stresses point toward, or both point away from the line of
intersection of the faces.

As a consequence of this theorem, stress state in a point of the body is unambiguously
determined by six independent components of the stress tensor Tσ, because this tensor
can be expressed by a symmetric square matrix.

Stress state in a point of the body is described by the stress tensor and depends
on the shape of the body, its loads and on the position of the investigated point in
the body. In some cases, the stress state can be influenced by material properties as
well.

Stress state of the body is a set of stress states in the individual points of the body.
It is determined by a tensor field, i.e. by a set of stress tensors in all the points of the
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body. It depends on the shape of the body and its loads, and, in some cases, it can be
influenced by material properties as well.

The stress state of the body is denoted as homogeneous if stress states in all the
points of the body are equal, i.e. if stress tensors in all the points of the body are identical.

4.1. Saint Venant’s principle

When solving practical problems, we usually do not know the real distribution of the area 
forces acting on the body surface and we must replace them by a model of force
interaction with various degree of simplification (isolated force, couple of forces, constant 
specific force per unit area etc.). This replacement evokes a basic question concerning the 
applicability of the results in practice: how is the change of the stress state in the body if 
the system of loads is substituted by another system of loads that acts in the same 
region of the body surface and is statically equivalent to the original one.
It was proven by comprehensive analyses that difference 
between the effects (stresses) of two different but 
statically equivalent loads becomes negligible at a 
distance at least equal to the largest dimension of the 
loaded region.
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The practical meaning of this principle for stress analyses of bodies and structures can be 
illustrated in the following figures. If we draw the distribution of one stress component (e.g. 
σx) along a straight line crossing the body, say for the real (reality R) load and for two 
statically equivalent load substitutes (SE loads 1 and 2), the effect of the load substitution 
will become insignificant in the distance larger than δ  from the loaded region with δ  the 
dimension.

These facts were at first formulated quite intuitively by Saint-Venant; at the actual level
of science, Saint-Venant’s principle can be expressed as follows:

If a real system of loads is substituted by another system of loads, which acts in the same 
region of the body and is statically equivalent to the original one, the stresses in the 
body caused by either of the two systems are the same, except of a volume in near 
surroundings of the loaded region; the dimensions of this volume correspond to the 
dimensions of the loaded region.
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Importance of Saint-Venant’s principle:

a) it enables us to use computational models of loads (vo-
lume and area forces) correctly

b) it enables us to introduce computational models of contact be-
tween bodies correctly

c) it proves incorrectness of some
substitutes (commonly used in
statics) for stress analyses

Any substitution in stress analysis should be, in addition to the static equivalence, evalua-
ted in accordance with the Saint-Venant’s principle. The acceptability of the substitution,
however, depends on the limit states significant for the body in question.

In general, the substitution of a system of loads by another one
is always acceptable, if the region ΩS where the substitution
of loads was carried out, is quite different from the region ΩM

where limit states are expected. If these two regions have some
common points the substitution is acceptable only in some
special cases as described below.
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If the regions ΩS and ΩM has some common part, the substitution is acceptable under
the following conditions:

– The region ΩS where the substitution is
carried out is relatively small in compa-
rison with the body.

– The risk of failure is rather higher in the
body loaded by the substitutive system
of loads than under the real loads.
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