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18. Finite element method

Among the up-to-date methods of stress state analysis, the finite element method (abbre-
viated as FEM below) dominates clearly nowadays; it is used also in other fields of engi-
neering analyses (heat transfer, convection of liquids, electricity and magnetism etc.). In
mechanics, the FEM enables us to solve the following types of problems:
– stress-state analysis under static, cyclic or dynamic loading, incl. various non-linear
problems;

– natural as well as forced vibrations, with or without damping;
– contact problem (contact pressure distribution);
– stability problems (buckling of structures);
– stationary or non-stationary heat transfer and evaluation of temperature stresses
(incl. residual stresses).

The fundamentals of FEM are quite different from the analytical methods of stress-strain
analysis. While the analytical methods of stress-strain analysis are based on the differen-
tial and integral calculus, the FEM is based on the variation calculus which is generally
not so well known; it seaks for a minimum of some functional.
Note:
Function - is a mapping between sets of numbers. It is a mathematical term for a rule
which enables us to assign unambiguously some numerical value (from the image of map-
ping) to an inital numerical value (from the domain of mapping).
Functional - is a mapping from a set of functions to a set of numbers. It is a rule which
enables us to assign unambiguously some numerical value to a function (on the domain
of the function or on its part). Definite integral is example of a functional.
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Strain energy represents the basic functional in stress-strain analysis of bodies. It is
the work done during the deformation of the body; it is reversible in the case of elas-
tic deformation, i.e. this work can be recuperated if the body (e.g. a spring) returns to
its initial (undeformed) state. According to the above definition of a functional, it is a
numerical value assigned to the functions describing the displacements of the individual
points of the body; in the most common so called deformational variant of FEM, dis-
placements are basic unknown functions. The strain energy can be calculated for any
deformed shape of the body from strains and stresses in all the points of the body. The
body cannot adopt a random shape (under certain loads and with certain supports) but
its deformed shape is unambiguously determined (except some stability problems); it is
the shape which requires the minimal work for deformation, i.e. the shape with the least
strain energy. This fact is mathematically expressed by the principle of minimum of
the quadratic functional. This principle is generally valid in the nature and it tells us
that only that of the possible processes comes into being which requires the minimal con-
sumption of energy (e.g. the rasor-edge cuts the material always through the way having
the minimal resistance). Consequently, only that of the possible deformed shapes of the
body (i.e. being in accordance with the given boundary conditions - loads and supports)
will be realized, which has the minimal strain energy. The total energy potential Π of
the body represents the corresponding functional, the minimum of which defines the real
deformed shape of the body; this energy potential is defined as the total strain energy W
of the body after subtraction of energy potential P of the external loads:

Π =W − P

Naturally, the total energy potential of the body is function of displacements of its in-
dividual points. Variation methods of mathematics enable us to find a minimum of the
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functional Π, i.e. to find such a shape, in which this functional will be minimal under the
given boundary conditions (loads, supports); this shape will be the only one to come into
being.

It is possible to evaluate the strain components from the displacements of the indivi-
dual points and, consequently, the stress components using constitutive equations (with
the known material characteristics). In practice the calculation is carried out in such a
way that a geometrical model of the body or the structure is created using preprocessing
(i.e. a computer programme for input data processing); this model must be continuously
(without any residues) divided into finite elements. The basic in plane element is a quad-
rangle, in a 3D space it is a hexahedron (brick); sometimes simplified element shapes are
used (triangle, tetrahedron).

The corners of these elements, if need be also some other points, represent nodes of the
mesh in which the unknown displacements are calculated. The edges of the elements create
the mesh, the density of which is decissive for the accuracy of the results. These edges
are mostly straight but, at quadratic elements, also curvilinear edges can be realized. The
quadratic elements have, in addition to the nodes in their corners, also some more nodes
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in the midpoints of the edges; in this way we obtain an eight-node-element in plane and
a twenty-node-brick in the 3D space. These elements are able to describe the local stress
concentration much better even if the mesh is rather rough (see the following example).

The distribution of the first principal stress is demonstrated in the right-hand colloured
figure for a symmetric half of a notched shaft (shaft shoulder); the red colour corresponds
to the highest stress level (in the root of the notch). The mean normal longitudinal stress
in the cross section of the notch has the value of 1MPa, the maximum stress value is
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1,676MPa. The folowing table shows that, in the case of a fine mesh (left half of the
left-hand figure), the quadratic as well as linear elements give correct results, while the
error is much higher in the case of linear elements than for quadratic elements, if the
rough mesh (corresponding to the right half of the left-hand figure) is used.

Type of element mesh density calculated maximum stress [MPa]
linear - four nodes rough 1,28
linear - four nodes fine 1,67
quadratic - eight nodes rough 1,59
quadratic - eight nodes fine 1,67

The table presents the maximum stress value in the root of the notch (shaft shoulder) un-
der a tensional load, calculated using various types of elements and various mesh densities
corresponding to the above figure.

In practice, the number of calculated points cannot be infinite. Therefore the density of
the created mesh is determined by the engineer and the quality of the mesh depends
on his experience. If the mesh is too fine (dense), the solution is too time-consuming;
in opposite, if the mesh is too rough, the calculated stresses can be substantially lower
than the real values and the maximum stress can be underestimated. This can happen
especially in the case of a pronounced local extreme of stresses (notch root in the above
example). The up-to-date programme systems are able to create the mesh automatically,
but the estimation of the sufficient mesh density must be made by the engineer in any
case; moreover, a mesh created by an experienced engineer is almost always much better
(shows lower computer time and memory consumption) than an automatically created
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mesh. Each node of the mesh represents three unknown parameters (displacements in
the three perpendicular directions) in the case of a 3D model. Standard PCs are able to
solve models counting tens or hundreds thousands equations (unknown parameters) in
reasonable computational times.
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It is necessary to define material parameters (modulus of elasticity and Poisson’s ratio in
the case of a linear elastic isotropic material) for all the elements of the model. Furher,
the boundary conditions (loads and supports) must be defined; these boundary conditions
should ensure (for a static problem) an immovable position of the body in the space
(all the degrees of freedom restricted). An eventual deformation restriction (statically
indeterminately supported body) does not make the problem more complex; only some
more boundary conditions are prescribed. In the second step, the solver is activated; this
is a programme which assembles the system of equations with the unknown displacements
and calculates the strains and stresses of them. The solver cannot be activated without
definition of all the input data (geometry of the model, material properties, supports and
loads); therefore inverse problems (i.e. problems in which some parameters of geometry,
material, loads or supports are not known) cannot be solved by finite element method. Checking

questionThe last component of the program system is the postprocessing, i.e. a programme for
presentation of results. It enables us to represent any of the output parameters (e.g. displa-
cements, stresses etc.) in the solved body or in its part in various ways. Also some reduced
stresses or other values necessary for evaluations of safety factors can be calculated.
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