
p13 – 1

13. Simple flection

13.1. Definition

Simple flection is loading of a straight prismatic bar, if
– bar assumptions are satisfied,
– cross sections rotate around an axis lying in the cross section and, consequently,
deform,

– the only non-zero components of the inner resultants are bending moments ~Moy, ~Moz,
– deformations of the bar are not significant from the viewpoint of element equilibrium.

bar
assumptions

Note: It results from the Schwedler’s theorem T = dMo/dx that ~Mo must be constant if
the shear force T = 0. This is exactly satisfied only at bars loaded by couples.

Since at the simple flection two of the components of inner resultants are non-zero
( ~Moy, ~Moz), the solution is more complex than in the case of other types of loading.
This type of flection is called general flection (sometimes also inclined or 3D flection).

To simplify the derivation, all the relations will be derived first for the so called ba-
sic flection (only one component of bending moment is non-zero), in particular for
Moy 6= 0,Moz = 0.
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13.2. Geometrical relations

We isolate a onefold elementary element Ω1 as a free body
from the bar and then again a threefold elementary one Ω3
from it. The element Ω1 deforms in such a way that the ad-
jacent sections ψ1 and ψ2:
– rotate around an axis lying in the cross section, and
the original length dx of the element Ω3 changes by an
increment du,

– remain perpendicular to the deformed bar centreline, so that the right angles α and
β of the element Ω1 and Ω3 do not change.

Since the cross section remains planar, according the bar assumpti-
ons, also after its rotation and it rotates around a straight line paral-
lel to the y-axis under conditions of basic flection (Moy =Mo 6= 0),
the displacements du are independent from y coordinate and they
can be described by an linear equation (an equation of a straight
line in (x, z) plane) du(z) = a1 + b1z. The following compo-
nents of the strain tensor correspond to this deformation:

– length strain in the direction of the bar centreline,

εx(z) =
du(z)
dx

= a+ bz,

– zero angular strains γxy = γxz = 0.

bar
assumptions

In consequence of the transversal contraction, transversal strains εy = εz = −µεx come
into existence, different in magnitude in each point of the bar. strain
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In the case of simple flection, distribution of the length strains is linear throughout the
cross section and the angular strains equal zero.

A general triaxial strain state comes thus into existence in any point of the bar; this strain

state is described by the strain tensor in the form Tε =

 εx 0 0
0 εy 0
0 0 εz

 . In contrast to tensor strain
the simple tension, the strain state is non-uniform throughout the cross section, the values
are different in each of its points.

13.3. Stress distribution throughout the cross section

If the material is Hookean (homogeneous, linear elastic), the distribution
of the normal stress σx is also linear, similar to strain εx:

σx(z) = Eεx(z) = E(a+ bz).

Shear stress is determined by the relation: τ = E
2(1 + µ)γ = Gγ.

Hook’s law

Since γxy = γxz = 0, it holds also τxy = τxz = 0.

The other components of the stress tensor (σy, σz, τyz) equal zero because of the bar
assumptions. Therefore, the only non-zero stress component is the normal stress σx with bar

assumptionsa linear distribution throughout the cross section.

In the case of simple flection, a uniaxial stress state comes into existence in the points 
of a bar but, in contrast to the simple tension, it is not uniform.
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13.4. Dependence between inner resultants and stresses

The relation for stress σ(z) can be derived from the equations
of static equivalence between the system of inner elementary
plane forces in the cross section σdS~i and their resultant ~Moy

in the cross section ψ of the element Ω0; we formulate this
equations in the local coordinate system acc. the figure. There
are three applicable conditions of static equivalence for a sys-
tem of parallel forces in a 3D space:

static
equivalence

∫∫
ψ

σdS = 0, Moy =
∫∫
ψ

z σdS, Moz = −
∫∫
ψ

y σdS = 0.

static
equations
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We substitute σ = E(a+ bz):

E
∫∫
ψ

(a+ bz)dS = 0 ⇒ a
∫∫
ψ

dS + b
∫∫
ψ

zdS = 0 ⇒ a = 0,

because
∫∫
ψ
zdS = Uy = 0 in a central coordinate system.

Moy = E
∫∫
ψ

(a+ bz)zdS = E(a
∫∫
ψ

zdS + b
∫∫
ψ

z2dS) ⇒ b =
Moy

EJy

By substituting a and b in the relation for the stress we obtain

stress

central c.s.

σ = E(a+ bz) = E
Moy

EJy
z ⇒ σ =

Moy

Jy
z.

However, the relation is valid if and only if the third applicable condition of static equi-
valence is satisfied; this is the case in a principal centroidal coordinate system only:

Moz = −E
∫∫
ψ

(a+ bz)ydS = −EMoy

EJy

∫∫
ψ

yzdS =
Moy

Jy
Jyz = 0 ⇒ Jyz = 0

principal
central c.s.
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Note:

For the non-zero bending moment Moz, a similar relation holds for stress:

σ = −Moz

Jz
y.

Since both of these stresses are parallel to the x axis, we can calculate the resulting stress
for the general (inclined) flection by addition of them:

σ =
Moy

Jy
z − Moz

Jz
y.

All these relations are valid in a principal centroidal coordinate system only. Therefore 
the basic flection comes into being just then if the line of action of the bending moment is 
identical with one of the principal centroidal axes of the cross section (e.g. with a symmetry 
axis).
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13.5. Extreme stresses

To simplify the description of the stress distribution in the cross section, we introduce
first the so called neutral axis, what is a straight line with the following properties:

– it lies in the cross section plane and contains its centroid,
– it holds σ = 0 and, consequently, ε = 0 in all of its points,
– it divides the cross section into two parts, one of them having positive and the other
one negative stresses.

It is evident from the formula for stresses in basic flection (Moy 6= 0) that the neutral axis
is identical with the y axis, and, at the same time, with the line of action of the bending
moment. Since the stress distribution is linear, the extreme absolute values must be in
points with maximum distance from this axis.

σmax =
Moy

Jy
zmax
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Therefore dangerous points are the points 
with the maximum absolute value of z co-
ordinate. The so called section modulus 
Wo [m3] can be introduced for the basic 
flection; this modulus is defined as the ratio 
of the principal centroidal axial quadratic 
moment (related to the neutral axis y) and of 
the maximum distance of an outline point 
from the neutral axis y, Wo = Jy/zmax). Then 
we obtain the following formula for the 
maximum stress:

σmax =
Moy

Jy
zmax =

Mo

Wo

.

Warning! Section modulus is not additive. For instance for an annular 
section, it must be calculated by subtraction of axial quadratic mo-
ments, while the maximum distance zmax = D/2 remains the same!

Wo =
Jy
D
2
=
πD4
64 −

πd4
64

D
2

=
πD3

32

1− ( d
D

)4

quadratic
moment

The evaluation of extreme stresses in general flection is much more complex.
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13.6. Strain energy

Under assumptions of the linear theory of elasticity, all the deformation work is trans-
formed into the reversible strain energy (A = W ). The following relation was derived
in chapter 11.6. for strain energy of a threefold infinitesimal element under conditions of strain energy 
uniaxial stress state

WΩ3 = A(σdS) = ΛdSdx =
1
2
σ2

E
dSdx.

The strain energy of a onefold infinitesimal elementΩ 1 can be obtained by integration of
the energy WΩ3 (after substitution σ(z) =

Moy

Jy
z for stress) throughout the area ψ: stress

WΩ1 =
∫∫
ψ

1
2
σ2

E
dxdS =

1
2E

∫∫
ψ

M2
oy

J2y
z2dSdx =

M2
oy

2EJy
dx,

because
∫∫
ψ
z2dS = Jy. The total strain energy accumulated in the bar of length l equals

then the integral of strain energies of elements Ω1 along the bar length

W=

l∫
0

WΩ1 =
l∫
0

M2
oy

2EJy
dx.

For the general flection (Moy 6= 0,Moz 6= 0), strain energy is given by superposition of
contributions of both basic simple flections (from bending moment components ~Moy, ~Moz):

W = WMoy + WMoz .

The relations are valid only for the principal centroidal coordinate system (Jyz = 0)! principal c.s.
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13.7. Description of centreline deformations
deformation
characteristics

simple
flection

If a straight prismatic beam is under flection, its centreline is bended and it creates the
so called deflection curve. According to the bar assumptions, the cross sections remain
planar and perpendicular to the deflection curve, so that displacements of any point of
the bar can be calculated if we know deflections and slopes in individual points of
the centreline (deflections are displacement components perpendicular to the centreline);
therefore these characteristics are denoted as basic deformation characteristics of the
bar under simple flection. They can be calculated from the differential equation of the
deflection curve.
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During the deformation of a onefold inf-
initesimal element Ω1, the two adjacent secti-
ons rotate mutually by the angle dϕ around 
the neutral axis. Neutral axes in the indi-
vidual cross sections create together a ne-
utral plane; in all points of this plane, 
stresses and strains are zero. The length of a 
threefold infinitesimal element Ω3 (given by 
the distance GH in the figure) changes 
into Ĝ’H’ by elongation and distortion of 
the element.
To derive the differential equation of the 
deflection curve, we assume again the ba-
sic flection with the line action of the 
bending moment identical with y axis 
(M~oy 6= 0, M~oz = 0).

bar
assumptions

neutral axis
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The elementΩ3 with its centreline in the distance of z from the 
neutral axis had the length of rdϕ before deformation (i.e. the 
same as the abscissa OA, the elongation of which is negligible) 
and the length of (r+z)dφ after deformation.
Then the length strain of the elementΩ 3 is

εΩ3 =
(r + z)dϕ− rdϕ

rdϕ
=
z

r

There is a uniaxial stress state under flection, and since we sup-
pose the basic flection with ~Moy, it holds

εΩ3 =
σ

E
=
Moy

EJy
z.

strain

uniaxial
stress state

stress

Hook’s law

By comparison zr =
Moy

EJy
z ⇒ 1

r =
Moy

EJy
we can obtain the curvature 1r of the deformed

centreline, or the radius of curvature r of the centreline.

Note:
Analogically for the latter component of bending moment ~Moz, we can obtain the relation basic flection

1
r
=
Moz

EJz
.

Since the term
Moy(x)
EJy(x)

is constant along the centreline (given by assumptions of the sim-

ple flection), the centreline is deformed into a circular arch (deflection curve). In practice, flection
however, cases with Mo(x) 6=const. are much more frequent; consequently 1r 6= const. and
the deflection curve is a general 2D curve. (The influence of shear force that must occur
if Mo(x) 6= const. will be analysed in chapter 13.9.2.) influence T
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In mathematics, the following relation was derived
for the curvature of a planar curve representing the
function z = z(x)

1
r(x)

=
±d

2z
dx2

[1 + (dzdx)
2]
3
2

=
±w′′

(1 + w′2)
3
2

,

where w is the displacement of a point of the cent-
reline in z direction (i.e. deflection). By comparison
with the curvature derived above, we can obtain the
differential equation of the deflection curve

±w′′

(1 + w′2)
3
2

=
Moy

EJy
.

It is a general non-linear differential equation of the 2nd order that can be solved in an
analytical way in some special cases only.
Only small deformations are admissible at most of technical objects and structures; if the
slopes are ϕ < 0, 1 rad, it holds w′ = tg ϕ .= ϕ and w′2 < 0, 01 can be neglected against 1.
Under assumption of small deformations, we obtain a common linear differential
equation of the 2nd order with a right-hand side; this equation can be solved by its
direct integration:

w′′ = −Moy

EJy
.

The negative sign in the equation occurs in consequence of the introduced sign conventions
and orientation of coordinate axes.
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13.8. Deformation of the cross section

In consequence of the transversal contraction, the strains εy and εz are non-zero so that
the cross sections change under deformation. The calculation of changes in cross section
dimensions is more complex than in the case of the simple tension, because the strain
state is non-uniform. These changes, however, are mostly not significant in practice. deformation

13.9. Fields of applicability of the theory of simple flection of bars

13.9.1. Influence of the cross section variability along the centreline

a) Continuously variable cross section

Let’s have a straight bar with a cross section which changes continuously along the bar
centreline; the bending moment is constant along the centreline and the principal axes of
all the cross sections are parallel (the bar is not screw-shaped).

It was derived in chapter 11.10.1 that a shear stress occurs in the cross
sections if N 6= 0. Similarly it can be derived for simple flection that a
variability of the cross section magnitude along the centreline induces
shear stresses in cross sections as well.

derivation

It holds here similarly to the simple tension that if the change in cross section magnitude is
small, also the shear stress will be small in comparison with the normal stresses (τ � σ)
and this deviation from the bar assumptions can be neglected. The above relations of bar

assumptionssimple flection can then be used in calculations of stresses and deformation characteristics.
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b) Stepwise changes in cross sections (notches)

The location with the maximum stress value is called the root of the notch. The maximum
stress value is calculated using the formula σmax = ασn, where α is the stress concentration notches

α graphsfactor, σn is the nominal stress in the notch location, calculated using formulas of simple

stress
theory of elasticity.

Problem 602
We can see the differences in stress distributions in the notch locations between two
examples of bars loaded in a) tension and b) flection:

1. under flection, the stress concentration can occur
simultaneously in both positive (tensile) and ne-
gative (compressive) parts of the cross section,

2. under flection, the notch location influences sub-
stantially the stress concentration (the character
of stress concentration is different in dependence
on the location of the notch in the cross section),

3. under flection, the maximum stress in the root of a
notch near the neutral axis need not to exceed the no-
minal stress at the circumference, while under tension
(because of the uniform stress state in the unnotched
cross section) the stress in the root of the notch is
always the highest in magnitude.

previous CONTENT next



p13 – 16

13.9.2. Variability of bending moment along the centreline

The assumptions of the simple flection can be satisfied only in the case of a bar loaded
by isolated couples, if it holds:

– shear force T (x) = 0,
– bending moment Mo(x) =M = const. in the individual intervals,

Then there are no shear stresses in cross sections.

In practice, bars loaded by isolated forces or distributed loads in transversal direction are
much more frequent. In these bars, the shear force is non-zero and the bending moment
is not constant; the term beam is generally used for this type of bars. The stress state in
beams is of a more complex type:

– normal stresses σ occur in cross sections, induced by the bending mo-
ment Mo,

– shear stresses τ occur in cross sections, induced by the shear force T~.

Transversal loads result always in shear stresses in cross sections of the beam.

The magnitude and distribution of the shear stresses in the cross sections with a general
shape of the outline and general direction of the shear force cannot be solved but using
methods of general theory of elasticity or finite element method.
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At the level of simple elasticity theory of bars, the following two cases can be solved:

1. cross section with one symmetry axis at least,
2. thin-walled cross sections - I, U, T profiles under assumption that

– the beam is prismatic,
– the beam surface is not loaded by shear loads.

The following formula (sometimes called Zhuravsky’s or
shear formula) is used for calculation of shear stresses.

τ(x, z) =
T (x)Uyψ1(z)

b(z)Jy
,

where Uyψ1(z) is the first (static, linear) moment of the
area ψ1(z) with respect to the neutral axis y.

static
moment

neutral axis

This formula was derived under assumption that the line of action of the shear force Tz is 
identical with the symmetry axis z of the cross section and the shear stresses are constant 
across its width (τ(y) = const.). Using this formula, the following formulas for maximum 
shear stresses (in centroid of the cross section) can be derived:

a) in a rectangular cross section: τmax =
3
2
T

S

b) in a circular cross section: τmax =
4
3
T

S
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Note: It is thus evident that the so called conventional shear stress τs = T/S, used some-
times in practice, underestimates substantially the shear stress magnitude. Additionally,
the assumptions of the shear formula are not satisfied in some of the profiles and the
extreme shear stresses are even higher in reality.
To calculate the deformation parameters using Castigliano’s theorem, the influence of the Castigliano’s

theoremshear force should also be comprehend in the strain energy. The formula Λ = τ 2
2G was

derived for the strain energy density induced by shear stresses. If the shear stress induced  Λ 
by the shear force T  acts in the cross section the strain energy of a onefold infinitesimal
element Ω1 can be obtained by integration of this term throughout the cross section ψ

WΩ1 =
∫∫
ψ

τ 2

2G
dSdx =

1
2G

∫∫
ψ

T 2U2yψ1(z)

b2(z)J2y
dxdS.

After some manipulations (we add S in both numerator and denominator of the fraction
and denote as β the term in brackets, which is function of cross section characteristics
only and is constant for a certain cross section) we obtain:

WΩ1 =
T 2

2GS

S ∫∫
ψ

U2yψ1(z)

b2(z)J2y
dS

 dx = βT 2

2GS
dx

It holds for a circular section β = 32/27 = 1, 185 .= 1, 2, for a rectangular β = 1, 2.
The contribution of the shear force to the total strain energy of the beam with length l Example 627
is thus:

WT =
l∫
0

WΩ1 =
β

2G

l∫
0

T 2(x)
S(x)

dx.
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13.9.3. Beams with curved centreline

The normal stress distribution in the cross section of a beam with a curved planar centre-
line under basic flection is hyperbolic, in contrast to a straight beam where the distribution basic flection
is linear; the neutral axis is shifted from the centroid towards the center of curvature     neutral axis 
of the beam. To compare the resulting stress values calculated using formulas for curved 
beams σz and for straight beams σp (in a beam with
R being radius of curvature a h dimension of the 
cross section in the plane of the centreline), the 
dependency ∆σ(R/h) is repre-sented in the figure; ∆
σ is calculated as follows:

∆σ =
σz − σp
σz · 100 %.

σp

The ratio R/h represents the inverse relative curvature of the beam, the value ∆σ is the
relative deviation of σp from σz.
It is evident from the graph that the stresses in beams with low curvature

(h� R, i.e. Rh � 1) can be calculated using formulas va-
lid for straight beams; the relative error will be ∼ 4% for
R/h = 10 and ∼ 8% for R/h = 5. For the beams with high
curvature (R/h < 5) the stress distribution is hyperbo-
lic (it cannot be replaced by a straight line), the extreme
stress is higher and it must be calculated using a theory of
beams with high curvature (which is not included in this
bachelor course) or, more frequently today, using the finite
element method.
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13.10. Solving problems concerning simple flection of beams

13.10.1. Free beam

We derived the relations for stress, deformation parameters and strain energy valid for a
bar under flection if the bar assumptions are satisfied. In this course, we restrict ourselves bar

assumptionsto basic flection in practical calculations; then the following simplified formulas are valid:

σ(z)

σmax

w′′

W

σ(z) =
Moy

Jy
z; σmax =

Mo

Wo

; w′′ = −Moy

EJy
; W =

l∫
0

M2
oy

2EJy
dx

To judge the limit states of beam deformation, we need to know the deflections or slopes
in some significant points of the beam centreline at least. There are many methods for
evaluation of these deformation parameters of beams; we introduce two of them:

– integration of the differential equation of the beam’s deflection curve (differential
approach),

– Castigliano’s theorem (integral approach).
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13.10.2. Differential approach

The differential equation w′′(x) = −Moy(x)
EJy

can be solved by a direct integration; to be

soluble, it must be completed by boundary conditions. If the Mo(x) distribution along Problem 604

Problem 607the beam centreline can be expressed by a single (continuous and smooth) functional
dependency, one differential equation of the 2nd order is sufficient for the solution; two
boundary conditions are needed to solve the integration constants.

The boundary conditions can be described by:

a) support deformation conditions – known deflections or slopes in the locations where
the beam is supported by the base,

b) symmetry of deformation,

for x = l
2 → w′ = ϕ = 0 (the tangential line of the de-

flection curve is parallel to the x axis)
Thanks to this fact, there are two possibilities of how to
express the boundary conditions at the beam in the figure:
1. support conditions 2. symmetry of deformation

x = 0 w = 0 x = 0 w = 0

x = l w = 0 x = l
2 w′ = 0

c) geometrical bar assumptions (the bar centreline remains continuous and smooth du-
ring deformation). If the termMoy/EJy is expressed by different functional dependen-
cies in several intervals of the beam centreline, then we can formulate the conditions
of continuity and smoothness of the deflection curve on the boundaries of the inter-
vals.
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For instance, it must hold for the location where a change
in loads occurs (for x = a)
– the deflection calculated for the left-hand interval must
equal the deflection calculated for the right-hand inter-
val (continuity of the function) ⇒ wI = wII

– the slope calculated for the left-hand interval must
equal the slope calculated for the right-hand in-
terval (continuity of the first derivative of the
function, i.e. smoothness of the deflection curve)
⇒ ϕI = ϕII

bar
assumptions

previous CONTENT next



p13 – 23

At beams with the term Moy/EJy expressed by different dependencies in various parts of
the centreline, we can proceed as follows: Problem 616

– We divide the centreline into intervals in which the
termMoy/EJy is expressed by a single (continuous
and smooth) function dependency. The boundaries
of intervals are in the locations with changes in
loads, material or cross section characteristics.

– We formulate a differential equation for each of the
intervals.

– We formulate the support deformation conditions
resulting from the supports of the beam.

material
characteristics

cross section
characteristics

deflection
curve

– For all the boundaries between intervals, we formulate the following two boundary
conditions for the deflection curve:
conditions of continuity (equality of deflections calculated for the left-hand and right-
hand side intervals) (wi(a) = wi+1(a)), Problem 622
conditions of smoothness (equality of slopes calculated for the left-hand and right-
hand side intervals) (ϕi(a) = ϕi+1(a))

Since two integration constants must be calculated for the solution to one differential
equation, a corresponding number (two times the number of intervals) of boundary con-
ditions are needed. For the correctness of these boundary conditions it is necessary to

express the function Mo(x)
EJy

for all the intervals in the same coordinate system.
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13.10.3. Integral approach

The deformation parameters in some particular points of the centreline can also be eva-
luated using Castigliano’s theorem. věty. Castigliano’s

theoremThe strain energy accumulated in the beam with length l equals the sum of contributions
of bending and shear: WMo

WT

W = WMoy +WT =
1
2E

l∫
0

M2
oy(x)

Jy(x)
dx+

β

2G

l∫
0

T 2(x)
S(x)

dx,

To solve the displacement of the point J of action of the force ~FJ , we substitute the strain
energy into Castigliano’s theorem and differentiate the term in the general form: Castigliano’s

theorem

Example 625wJ =
∂W

∂FJ
=

l∫
0

Moy

EJy

∂Moy

∂FJ
dx+ β

l∫
0

T

GS

∂T

∂FJ
dx.

In this procedure, we must take into account that the deflection wJ is a global quantity
(it depends on the deformations of all the beam or even of all the structure). Therefore
the components of inner resultants must be expressed as function dependencies along all
the length of the beam centreline. At long and slender beams (l > 10h) the contribution
of the shear force can be neglected.
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13.10.4. Comparison of differential and integral approaches

1) Differential approach:
It enables us

a) to solve also large deflections – using the equation valid for large deformations
±w′′

(1 + w′2)
3
2
=
Moy

EJy
(only in certain simple cases), large

deflections
b) to solve the magnitude of deflection and slope in any general points of the beam,
c) to evaluate the magnitude of the extreme deflection even in the case that we do not Problem 624
know the location of the extreme.

Disadvantages: it does not comprehend the influence of shear force on the deflections and
slopes, and it is usually more time-consuming and mathematically difficult.

2) Integral approach (Castigliano’s theorem):
It enables us

a) to solve any deformation characteristic in a certain point of the centreline; if there is Problem 618

Problem 621

characteristics

no corresponding load in the point in question, we add a complementary force ~Fd = 0
or a complementary couple ~Md = 0 and we solve the task in the same way like in
the case of any other known external loads,

Example 625b) to comprehend the influence of the shear force ~T on deflections and slopes,
c) to carry out the calculation more easily and faster than using differential approach,
d) to choose any (advantageous) coordinate system which can be different in each of the
centreline intervals,

e) to solve also curved and angular beams.
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Disadvantages:

a) it can be used only within the range of linear elasticity (small strains and deflections, linear
elasticityHookean material, linear supports),

b) it solves only one deformation parameter in a particular point, it is difficult to be
used in searching for extremes.

13.10.5. Supported beam

In the surroundings of supports there is a region where the assumptions of simple flection
are not satisfied, because the support is not able to restrict only deflections and rotations
of the centreline points. This region cannot be solved using the formulas valid for simple bar

assumptionsflection. If this region is decisive from the viewpoint of limit states, it should be solved
e.g. using finite element method.

Procedure of how to solve supported beams

1. We isolate the beam as a free body and introduce reactions in the locations of the
removed supports.

2. We formulate the applicable equations of static equilibrium.
3. We evaluate the degree of redundancy s = µ− ν. The following cases can occur:
a) s = 0 – the bearing of the beam is statically determinate - we continue with
par. 7. Problem 602

b) s ≥ 1 – the bearing of the beam is statically indeterminate - we continue with
par. 4.
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4. We create a released structure and formulate the compatibility equations, i.e. the released 
support deformation conditions for deflections or rotations of centreline points, the structure 
number of which must equal the degree of static indeterminacy.

5. We express the compatibility equations by means of loads using Castigliano’s theo-
rem. If the supports restrict longitudinal displacements of the bar, a non-zero normal
force is created in the bar and the onefold loading changes into a combined one onefold

loading(flection + tension or compression). The compatibility equations can be:
a) homogeneous – the restricted kinematic parameter equals zero, Problem 617
b) non-homogeneous – the restricted kinematic parameter differs from zero because
of the production inaccuracies (e.g. different height of supports, misalignment of
supports etc.), Problem 608

Example 613c) circumstantial – the beam can be either statically determinate or indeterminate
in dependence on the magnitude of deflection or rotation (e.g. a too high assembly
clearance can disable the function of the support).

6. We formulate a set of equations consisting of conditions of static equilibrium of the
beam isolated as a free body and compatibility equations of the released structure.

7. We solve the set of equations for support reactions.
8. We solve the stress state and deformation parameters in the same way as for a free
beam.
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Examples

Problem 601 Problem 625 Problem 627

Problems

Problem 602 Problem 603 Problem 604 Problem 608 Problem 610

Problem 618 Problem 622 Problem 624 Problem 616 Problem 617
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