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7. Basic formulations of linear theory of elasticity

The division of the theory of elasticity to linear and non-linear elasticity is given by the
shape of the dependance of deformation and stress parameters on the loads.

Linear theory of elasticity searches into stress and deformation states under the
assumption that all the dependencies among loads, stress states, strain states and dis-
placements are linear. If linearity is violated in any of these dependencies, the resulting
problem is non-linear and it must be solved using methods of the non-linear theory
of elasticity.

The distinction between linear and non-linear elasticity is fundamental for stress-strain 
analyses and for judging of structures as well. The solutions to linear problems are 
much easier but their practical applicability is limited.
The necessary conditions for a problem to be linear:

– material is linear elastic,

– displacements of all points are small in comparison with the
dimensions of the investigated bodies,

– components of strain tensor are small (� 1, usually on the
order of 10−3 or less),

– boundary conditions are linear .

Example 623

In this course we will deal with problems in which deviations from linear behaviour are 
not substantial.
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7.1. Hooke’s law

Let’s note that
”
elastic deformation“ means fully reversible deformation. As a consequence

of deformation reversibility, the deformation in a certain time depends only on the loads
acting in this time and does not depend on the history of loads. Consequently stress state
of the body is also determined only by loads acting in this time.

The dependence between strain ε and stress σ is generally non-
linear. This non-linearity makes the stress-strain analysis much
more difficult.

At steel as the most common technical material used in design 
of structures, however, this dependence can be approximated by a 
linear dependence in the whole range of elastic deformations 
with a sufficient accuracy. In this way we obtain the simplest 
computational model of elastic material behaviour – linear 
elastic (Hookean) material, which obeys Hooke’s law.

Hooke’s law represents the simplest form of constitutive (physical) equations. These 
equations describe the relations between the components of strain tensor Tσ and stress 
tensor Tε in the investigated point of the body. If the material is linear elastic, then all these 
relations are linear. If the state of stress in a point od the body is uniaxial (e.g. in the central 
part of the specimen during tension or compression tests), the stress tensor Tσ has only one 
non-zero component - the normal stress σx in the longitudinal specimen direction (x axis) 
and the dependence between strain and stress components in this direction is described
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by the following linear relation

σx = Eεx,

where E is a proportionality parameter called Young’s modulus or modulus of elas-
ticity in tension (the magnitude of this modulus in compression is the same at most 
materials). As in tension or compression tests also lateral dimensions of the specimen 
change, (the state of strain is not uniaxial but triaxial), not only longitudinal but all 
the length strains are non-zero and they can be calculated using the formula:

εy = εz = −µεx,

where the parameter µ is called Poisson’s ratio. As at isotropic materials (i.e. materials 
with the same properties in all directions) no shear strains occur in tension or compression 
tests, the above relations define all the components of the strain tensor. Thus only two 
elastic parameters (both of them can be determined from a single test, in tension, or in 
compression) are sufficient to the complete description of linear elastic isotropic material 
behaviour. At an anisotropic material, the material properties depend on the direction 
and 21 independent elastic parameters are necessary for a complete description of linear 
elastic properties of the most general anisotropic material. However, the above relations 
are not sufficient for description of a linear elastic isotropic material properties, because 
their validity is limited to the case of uniaxial stress state. For a general triaxial stress 
state, all the normal stresses are functions of all the length strains and conversely. These 
relations are described by a general Hooke’s law, from which another form of Hooke’s law, 
valid for the shear stress state (in plane) only, can be derived:

τ = Gγ.
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The proportionality parameter G in this relation is called modulus of elasticity in
shear or shear modulus. Normally it does not need to be measured at isotropic ma-
terials, because it can be calculated from the above two elastic constants using another
relation which can be derived from the general Hooke’s law:

G =
E

2(1 + µ)
.
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7.2. Work done by a force during body deformation

Every force, the point of action of which moves, does some work. In general,
this work can be expressed by the following formula:

AF =
∫
u

~Fd~uA =
∫

uF

FduF ,

where the vector duA represents an elementary displacement of the point of action of 
force F and duF is the projection of this displacement in the direction of force F. The 
integral (it means the work done by the force) can be calculated only under condition that 
the dependence of the force on the position is known.

Let’s assume that the only one isolated force is acting on the linear elastic body in point A.
The body is deformed in consequence of the loading external force, so that the external
force is in equilibrium with internal forces induced in the body; therefore this force must
also change linearly with the change of position F (uF ) = c · uF in the whole range of
instantaneous values uF ∈ 〈0;uFK

〉, so that it increases from the zero initial value to the
final value FK = c · uFK

. During this process, this changing force does the work:

AF =

uFK∫
0

FduF =

uFK∫
0

cuFduF =
cu2FK

2
=

F 2K
2c
=
1
2
FKuFK

.
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The geometrical interpretation of the integral corresponds to 
the area below the curve in the graph F = F (uF ); in the case 
of linear dependence between force and displacement, the work 
done by the force corresponds to the triangle hatched in the 
graph.

If there are also other forces acting on the investigated body, the position of the point
of action of force ~F can be changed also in consequence of their influence. We can also
calculate the work done by force ~F in consequence of changes of the other forces (the
force ~F , however, remains constant during this process). This work done by the constant
force ~F on the displacement uF of its point of action (in the direction identical with that
of the force) from the zero point to uFK

is

AF =

uFK∫
FKduF = FKuFK

.
0

The graphic interpretation of this integral is a rectangular area and we really obtained the 
corresponding result.
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7.3. General principles of the linear theory of elasticity

There are several fundamental principles valid in linear theory of elasticity. Now, we
present some of them.

7.3.1. Principle of superposition

Example:

A bar is loaded by two isolated forces F~1 and F~2. The 
elongation of the bar equals the sum of elongations 
caused by the individual forces (∆l = ∆l1 + ∆l2). 
Warning: the principle is valid only in the linear part 
of the stress-strain diagram (linear theory of elasti-
city); e.g. principle of superposition is not valid for 
grey cast iron, because its tension diagram is non-
linear from the very beginning. The principle can be 
extended for any loads (not only forces but couples and 
distributed loads as well).

Stress (deformation) state of the body loaded by a system of loads equals - in linear 
theory of elasticity - the sum of stress (deformation) states caused by the individual 
loads of the system.
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7.3.2. Principle of reciprocity of works (Betti’s theorem)

Let’s have a beam loaded by a system of loads given by a set of
two isolated forces ~F1 and ~F2. The beam deforms under load and
the points of action of the both forces shift.

Let’s denote the displacement of the force Fi along its line of action caused by the action 
of the force Fj by symbol uij ; the meanings of subscripts at work Aij are analogical. 
Let’s analyse two load histories:
1. First, the body is loaded by force ~F1 and then force ~F2 is
added.

During the loading
{
~0

}
→

{
~F1

}
, force ~F1 does work A11 given by

the formula A11 =
1
2
F1u11.

Analogically, during the loading
{

~F1
}
→

{
~F1

}
∪

{
~F2

}
, force ~F2

does work A22 =
1
2
F2u22,

and at the same time, as the force ~F2 induces displacements of all
the points of the body (except of the immovable ones because of
supports), the force ~F1 does the work

A12 =
u11+u12∫

u11
F1du12 = F1u12 and the total work is

A1 = A11 + A22 + A12 =
1
2
F1u11 +

1
2
F2u22 + F1u12.
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2. Now let’s consider an opposite procedure. First the body is loaded by force ~F2 and
then force ~F1 is added.

The work can be obtained in the similar way:

A2 = A22 + A11 + A21 =
1
2
F2u22 +

1
2
F1u11 + F2u21.

As neither stress state nor deformation under load depend on the
history of loads (if the body is linear elastic), nor the deformation
work depends on the history (it means that the system of loads is
conservative, i.e. preserving work). Therefore the following equality
must be valid:

A1 = A2.

After substitution we obtain:

1
2
F1u11 +

1
2
F2u22 + F1u12 =

1
2
F2u22 +

1
2
F1u11 + F2u21

and after simplification
F1u12 = F2u21 .

This equality expresses the simplest form of the Betti’s theorem. In words, it can be
expressed as follows:
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Betti’s theorem:
If two forces F1 and F2 are acting on a linear elastic body, the work done by the force F1 
on the displacement components induced by the force F2 equals to the work done by the 
force F2 on the displacement components induced by the force F1.

Naturally, the theorem can be generalised for more complex systems of loads. However, its 
simplification by introduction of unit forces is more important for us. If both forces equal 
1 N, they can be cancelled out in the equation. The corresponding coefficients are called 
causal coefficients and the following formula is valid for them:

η12 = η21.

In accordance with the above notation of the displacements, the causal coefficient η12
means displacement of the point of action of force ~F1 caused by the unit force ~F2. These
causal coefficients are already characteristic constants for the body and its given points.
They can be advantageously exploited in calculation of the displacement of the point
of action of the force, when the body is loaded by a system of loads. For example, the
displacement of the force ~F1 when the body is loaded by a system of two forces

{
~F1; ~F2

}
can be calculated using the formula

u1 = F1η11 + F2η12.
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7.3.3. Deformation work of a system of isolated forces

A system of isolated forces Π = {~F1, ~F2}. acts on a linear elastic body. As
the deformation work is independent of the load history, the sequence of the
loads can be chosen in the way that the force ~F1 acts on the body at
first, then the force ~F2 is added etc. Then the deformation work equals:
{~0} → {~F1} ⇒ A1 = 1

2F1u11.

{~0} → {~F1} → {~F1} ∪ {~F2} ⇒ A2 = A1 + 12F2u22 + F1u12 =

= 1
2F1(u11 + u12) + 12F2u22 +

1
2F1u12.

Using Betti’s theorem we can obtain

F1u12 = F2u21 ⇒ A2 =
1
2
F1(u11 + u12) +

1
2
F2(u21 + u22)

As displacement ui can be expressed as ui = ui1 + ui2, we obtain for 
the work of the whole system

A =
1
2
F1

2∑
i=1

u1i +
1
2
F2

2∑
i=1

u2i + · · · =
1
2

2∑
i=1

Fiui,

where ui is the total displacement of the point of action of the force ~Fi, in the direction
of its line of action as the consequence of both forces acting on the body. The sum can
be naturally generalised for any number of forces.
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If a set of forces Π = {~F1, ~F2, · · · ~Fn} acts on a a linear elastic body, and the displacements
of their points of action A1, A2, · · ·An in their directions are denoted as u1, u2, · · ·un, then
the total work can be calculated using the following formula:

A =
1
2
F1u1 +

1
2
F2u2 + · · ·+

1
2
Fnun =

1
2

n∑
i=1

Fiui.
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Deformation work of couple of forces

A couple of forces defined by the momentum M~ (with 
magnitude M = 2rF ) acts on a linear elastic body. The 
displacements of the points of action of the forces of the 
couple can be expressed in the form u = r tg ϕ and for a 
small angle (which is an assumption of linear theory of 
elasticity) it reads u = rϕ. The work done by the couple of 
forces is

A =
1
2
FuC +

1
2
FuD =

1
2
Frϕ− 1

2
F (−rϕ) =

1
2
F2rϕ =

1
2
Mϕ

a) Turning angle ϕ in point A of the body is determined by the changes in direction
angles of a straight line fixed to the body in point A.

b)

7.3.4. Castigliano’s theorem

We present a simplified derivation of Castigliano’s theorem for a beam. Let’s have a beam 
loaded by two forces in accordance with chapter 7.3.2. The deformation work A done 
during its loading process (for a beam made of an elastic material, this work equals 
the reversible strain energy W ) is linear function of the acting forces, which was derived
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Deformation work done by the couple of isolated forces is: 
where ϕ is the turning angle in the plane of the couple of forces between the deformed 
and undeformed states. 

1
2
MϕA=
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above in the form

A = W =
1
2
F1u1 +

1
2
F2u2.

Both displacements u1 and u2 of points of action of the loading forces are also linear 
functions of both of the forces. These displacements can be expressed using causal 
coefficients η in the form

u1 = F1η11 + F2η12 u2 = F2η22 + F1η21

The meaning of causal coefficients was explained in the chapter 7.3.2. Betti’s theorem.
By substitution into the above equation for deformation work we obtain the following
formula for strain energy

W =
1
2

(
F 21 η11 + F1F2η12 + F 22 η22 + F1F2η21

)
,

which can be easily differentiated with respect to any of the forces (causal coefficients ηij

are constants for a given body and given points). For example, by differentiation with
respect to the force F1 we obtain:

∂W

∂F1
=
1
2
(2F1η11 + F2η12 + F2η21) .

This manipulation is based on the mutual independence of forces (that means ∂F1
∂F2

=

0 = ∂F2
∂F1
.) As the causal coefficients are independent from the sequence of subscripts

(η12 = η21 as a consequence of Betti’s theorem), the above relation can be manipulated
to obtain the form:

∂W

∂F1
=
1
2
(2F1η11 + 2F2η12) = u1.
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If we generalise this formula for the j-th force of a system of loads, we obtain the first
part of the Castigliano’s theorem:

uj =
∂W

∂Fj

.

If the beam is loaded moreover by a couple of forcesMj then, during the loading process,
this couple does the work

A = W =
1
2
Mjϕj,

where ϕj is the turning angle of the straight line fixed to the body in the point of action
of the momentum Mj. Then under condition of the mutual independence of the mo-
ments and forces we can obtain the second part of Castigliano’s theorem by the same
manipulations in the form:

ϕj =
∂W

∂Mj

.

Verbally the Castigliano’s theorem can be expressed as follows:

For a linear structure the partial derivative of the total strain energy with respect to
any force ~FJ is equal to the displacement uJ of the point of action of this force in the
direction of its action (provided that the strain energy is expressed as a function of the

forces): uJ = ∂W
∂FJ
.

The partial derivative of the total strain energy with respect to any couple ~MJ is equal
to the corresponding turning angle ϕJ of the point of action of this couple in the direction
of its action (provided that the strain energy is expressed as a function of the forces and

couples): ϕJ = ∂W
∂MJ

.

Example 422
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The Castigliano’s theorem is the most important theorem of linear theory of elasticity from 
the viewpoint of practical application, because it enables us to calculate deformation cha-
racteristics of any linear elastic body, provided that we are able to formulate a relation 
for its strain energy. The whole system of bodies must be included in the strain energy 
if the deformations of the neighbouring bodies (or of the frame) are not negligible in 
comparison with the deformations of the investigated body.

Note:

A negative sign of the displacement (or turning angle) means that the orientation of this
displacement (angle) is opposite to the orientation of the corresponding force (couple of
forces). Castigliano’s theorem is independent from sign conventions, because a positive
work means always that the displacement is oriented according to the orientation of the
acting force.
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