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17. Fundamentals of theory of limit states

At the beginning of this chapter, let’s try to define the objectives of the theory of limit 
states. Most students, and engineers as well, identify all the mechanics of materials with 
the stress-strain analysis, i.e. calculation of stresses and strains in the bodies under load. 
The extreme calculated stresses (or deformations) can then be compared with the corre-
sponding limiting values (yield stress, strength, ultimate stress, fatigue strength etc.), so 
where is the need of the scientific branch called theory of l imit states?
We will show the reasons using an example of multiaxial state of stress. The simple procedure 
described above is namely sufficient only in the case that the state of stress (if the stress 
is the quantity decisive for the occurrence of the limit state in question, e.g. for plastic 
deformation or fracture) is defined only by a single non-zero component of the stress
tensor Tσ. In the case of a uniaxial or shear (in plane) stress states, the evaluation of the uniaxial

stress state

shear stress
state

risk of the limit state of elasticity is really as simple; in fact, students in the bachelors
degree have not exercized any more complex stress states in their practical computations.
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stress
However, the risk evaluation of the limit state is not so easy in the case of a more com-
plex stress state, e.g. when there is a bar-type state of stress (defined by normal σ and shear      bar 
τ components of stresses in the bar cross section) in the body in question. Try to answer       state
the following question, very easy at first sight, concerning the illuminating example be-
low: which of the stress states 1 and 2 (defined by the stress tensors Tσ1 and Tσ2 in the
dangerous point of the body) is more dangerous, i.e. in which of them there is a higher
risk of failure (loss of the body functionality)?

Tσ1 =

 50 50 050 0 0
0 0 0

 Tσ2 =

 70 40 040 0 0
0 0 0


The answer is not unambiguous, it depends on the type of material behaviour. The influ-
ence of the normal stress is higher at a brittle material, so that the risk of failure (brittle
fracture) will be higher in the case 2, while the influence of the shear stress component
will be higher at a ductile material (i.e. the stress state Tσ1 will bring a higher risk of
plastic deformations of the body). The evaluation of a general stress state defined by six stress state
non-zero components of the stress tensor is even more complex; some of the stress com-
ponents can increase, some others can decrease or remain unchanged between any two
of the operational states of the body. E.g., if you should to judge the right front wheel
axle of a vehicle, what of the possible operational states is the most dangerous, breaking,
going through a sharp left curve or passing a pot-hole in the roadway? In all of these
examples, the load of the wheel, axis or all the vehicle gear is quite different. Even the
trivial question whether the transition from the above stress state 1 to the stress state 2
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can be called loading or unloading is not easy to be answered. The generally valid answer
can be formulated as follows:

The process of change of the stress-strain state in the body can be called loading, if there
is a higher risk of a certain limit state (failure) in the final stress state than it was in the
initial state. An inverse process is called unloading.

It is evident from the above facts that it is necessary to find a procedure of how to evaluate
the risk of limit states (failure) if the decisive quantity shows a tensor character, i.e. it
is defined by more independent components. Formulation of such procedures (so called
limit state criteria) is the objective of this chapter and of the theory of limit states as a
scientific branch.
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17.1. Factor of safety

The ability of the structure to perform the intended operational functions under normal 
and some extraordinary (e.g. pressure test of a vessel) conditions is called reliability of 
the structure. The reliability is required to be quantified, i .e. we need to e valuate how 
large the changes of the quantities influencing the limit state occurrence can be until a 
failure occurs. As any of the measured or calculated quantities is stochastic, we cannot 
allow states near the limit state in the operation of the structure; there must be a margin 
called safety. To evaluate this safety, we need to find a physical quantity 
 decisive for the limit state occurrence (e.g. normal, shear or reduced stresses, force, 
deflection, number of load cycles etc.). For this quantity, the factor of safety (called more 
precisely simple factor of safety) relating to the limit state in question is defined by the 
following general relation:

k = αM
αP
,

where αM is the limiting value and αP is the operational value of the decisive quantity α.
In practice, the value of factor of safety must be k > 1. If it holds k = 1, the correspond-
ing limit state occurs. For the particular limit states we can define

the factor of safety against

{ limit state of deformation kD =
ulimiting
umax

limit state of elasticity kK =
σK

σmax
limit state of brittle fracture kR =

σRt
σmax

The above relations are valid if and only if the limit state is unambiguously defined by a  uniaxial 
single component of the decisive quantity (i.e for example in the case of a uniaxial stress stress state 
state).
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To evaluate the factor of safety (risk of failure), we need some 

failure criteria – theory of limit states (failures).   

Plasticity criteria (Tresca, Mises) are based on shear stresses 

(explanation in the figure below), while fracture (crack propagation) is 

more dependent on normal components of stresses. 

ion 

ion 
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17.2. Limit state of elasticity

Till now, we dealt with a bar, i.e. a model body loaded in tension (compression), torsion or bar

tension

torsion

flection

flection. In the simple tension (compression) or flection, a uniaxial stress state occured in 
the bar, while pure shear occured in the bar under torsion. We solved stresses and 
deformations for these types of loads and we met limit states of deformation and elasticity 
(yield) when solving these tasks.
We calculated the factor of safety against yield using the relations

for tension and flection kK =
σK

σmax
, for torsion kK =

τK

τmax
=

σK

2τmax
.

The combined load of bars requires a description of limit states under conditions of bar-type    combine 
state of stress (a particular case of biaxial stress state), other models (analytical or nume-   loading

bar stress
state

rical) can result in even more complex stress states in dangerous points. The simplest
level of description of the limit state of elasticity requires under conditions of a multiaxial
stress state:
– monotonously increasing loads (plasticity criteria do not hold for cyclic loa-ding),
– isotropic material from the viewpoint of yield stress (plasticity criteria do not depend
on the directions of the stresses),

– uniparametric limit state (the limit state of elasticity is described by a single mate-
rial characteristic, yield stress σK , which has the same magnitude in tension and in
compression).
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If we need to judge the risk of the limit state of elasticity (in the case of a multiaxial 
stress state), we need to formulate a general plasticity criterion (i.e. a mathematical 
description of the limit state of elasticity), and to know the limit value corresponding to 
this limit state (i.e. the yield stress – a material characteristic).
In the case of a uniaxial stress state, the relation σ = σK can be denoted as the plasticity
criterion; it can be expressed in the following general form:

F (σ) = σK , where F is a function of a single variable σ in this case.

The plasticity criterion for a triaxial stress state must be a function of the stress
tensor Tσ, i.e. a function of the six independent stress components

F (Tσ) = F (σx, σy, σz, τxy, τyz, τxz) = σK .

It is advantageous to represent the plasticity crite-
rion in the so called Haigh space; the coordinate 
axes of this space are identical with the principal 
axes of the stress state. In this space, the plasticity 
criterion is represented by a surface of plasticity, 
the loading process is represented by a curve – tra-
jectory of loading. The limit state of elasticity 
occurs when the trajectory of loading intersects the
limiting surface of plasticity (plasticity envelope).
Comprehensive experiments carried out during dozens of years resulted in the conclusion 
that a shear stress |τρK | in a certain section ρK is the quantity decisive for the occurrence
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of the limit state of elasticity; the plasticity criterion can be then formulated as follows:

F (|τρK
|) =MK (where MK is a material characteristic).

A most simple function F which can be used in practice as plasticity criterion is a linear
function; the corresponding plasticity criterion can be expressed in the form

F (|τρK
|) = |τρK

| = τMK , where τMK is a material characteristic.

The section ρK was chosen on the basis of experimental experience; we can obtain various
plasticity criteria in dependence on the choice of the relevant section.

17.2.1. Tresca’s plasticity criterion (max τ)

The plasticity criterion based on the maximum shear stress assumes the section in which
the maximum shear stress τmax acts to be the decisive section ρK ; therefore the criterion
can be formulated in the form

τmax = τMK

The limit state of elasticity comes into existence under conditions of monotonous loading
of material in basic structural state (with the beginnning of loading in a stress-free
state) if the maximum shear stress reaches its limiting value τMK which is a material
characteristic.
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For a general stress state:

τmax =
σ1 − σ3
2

= τMK

For a uniaxial stress state:

τmax =
σ1
2
=

σK

2
= τMK ,

because σ2 = σ3 = 0 and in the limit state of elasticity σ1 = σK .

Our objective is to judge the risk of occurrence of the limit state under conditions of 
multiaxial stress states on the basis of experiments carried out in uniaxial stress state 
only (tension test); by comparing both types of stress states we obtain:

τMK =
σ1 − σ3
2

=
σK

2
⇒ σ1 − σ3 = σK
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By introducing the reduced stress

σred = σ1 − σ3 ,
we can obtain the form similar to the uniaxial stress state σred = σK  and we can calculate 
the factor of safety using the following formula

kK =
σK
σred

.

Reduced stress σred

is a fictitious value of a uniaxial tensional stress giving the equal factor of safety 
against the judged limit state with the multiaxial stress state in question.

judged limit
state

Note: the reduced stress is also called equivalent stress or stress intensity.

Evaluation of risk of failure using the reduced stress is then the same as in the case of 
the uniaxial stress state:
σred < σK – material is in elastic state,
σred = σK – the limit state of elasticity is reached,
σred > σK – material is in plastic state in the point in question.

The above general form of the Tresca’s plasticity criterion max τ is valid for any stress
state, it is however necessary to calculate all the three principal stresses. For some par- principal

stressticular types of stress states (uniaxial stress state in bars loaded in tension, compression

flection

torsion

or flection, pure shear stress in bars loaded in torsion, bar-type state of stress in bars under 
combined load), the Tresca’s plasticity criterion max τ or the formula for reduced stress can 
be simplified in the following forms:
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1) Uniaxial state of stress
a) tensional

σ1 = σ > 0, σ2 = σ3 = 0 ⇒ σ = σK

uniaxial
stress state

b) compressional σ3 = σ < 0, σ1 = σ2 = 0 ⇒ |σ| = σK σred = |σ|

2) Pure shear stress

σ1 = −σ3 = τ σ2 = 0

shear stress
state

σ1 − σ3 = τ − (−τ) = σK ⇒ 2τ = σK σred = 2τ

in the limit state of elasticity τ = τK ⇒ τK =
σK
2 (τK . . . yield shear stress)

3) Bar-type state of stress

σ1 =
σ

2
+

√(
σ

2

)2
+ τ 2 σ2 = 0 σ3 =

σ

2
−

√(
σ

2

)2
+ τ 2

bar-type state 
of stress

By substitution in the plasticity criterion we obtain

σ1 − σ3 = σ
2 +

√(
σ
2

)2
+ τ 2 − σ

2 +
√(

σ
2

)2
+ τ 2 =

√
σ2 + 4τ 2 = σK σred =

√
σ2 + 4τ 2
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17.2.2. Mises’ plasticity criterion (HMH)

Von Mises’ plasticity criterion (the abbreviation HMH is based on initials of all the three 
authors of this criterion - Hencky, von Mises and Huber) assumes the octahedric section to      octahedric 
be the decisive section ρK ; therefore the criterion can be formulated in the form                         plane

|τo| = τoK

The limit state of elasticity comes into existence under conditions of monotonous loading 
of material in basic structural state (with loading beginning in a stress-free state) if the 
shear stress in the octahedric plane reaches its limiting value τoK which is a material 
characteristic.
The shear stress in the octahedric plane (octahedric shear stress) can be calculated for a
general stress state using the formula:

τo =
1
3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2.

For the uniaxial stress state (σ1 = σK , σ2 = σ3 = 0) it holds: τo

τo =

√
2
3

√
σ2K = τoK ⇒ τoK =

√
2
3

σK .

Our objective is to judge the risk of occurrence of the limit state under conditions of 
multiaxial stress states (for which material tests cannot be carried out) on the basis 
of experiments carried out in uniaxial stress state only, i.e. tension tests; yield stress is 
measured among other quantities in this tests. The Mises’ criterion is based on comparison of
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octahedric shear stresses τo in both types of stress states. By comparison of the octahedric 
shear stresses in the general and uniaxial stress states we obtain

1
3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2 =

√
2
3

σK

The Mises’ plasticity criterion for the general stress state defined by principal stresses
σ1, σ2, σ3 can then be written in the following form:√

1 [
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]
= σK2

If we introduce the reduced stress in the way similar to Tresca’s plasticity criterion

presented above σred =
√
1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]
,

the plasticity criterion can be simplified into the form σred = σK and we can calculate the 
factor of safety using the same formula as in the case of Tresca’s plasticity criterion

kK =
σK
σred

.

An important advantage of the Mises’ plasticity criterion is the fact that it can be derived
in the form based on the stress components in any general coordinate system, namely in
the following form:

σred =

√
1
2

[
(σx − σy)

2 + (σy − σz)
2 + (σx − σz)

2 + 6
(
τ 2xy + τ 2yz + τ 2xz

)]
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1) Uniaxial state of stress

a) tensional
σ1 = σ > 0, σ2 = σ3 = 0 ⇒√
1
2
(σ2 + σ2) = σK ⇒ σ = σK

uniaxial
stress state

b) compressional σ3 = σ < 0, σ1 = σ2 = 0 ⇒ |σ| = σK σred = |σ|

2) Pure shear stress

σ1 = −σ3 = τ σ2 = 0

σred =

√
1
2
[τ 2 + τ 2 + (2τ)2] = σK ⇒

√
3τ = σK

shear stress
state

in the limit state of elasticity τ = τK ⇒ τK =
σK√
3

σred =
√
3τ

(τK . . . yield shear stress based on Mises’ plasticity criterion)
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3) Bar-type state of stress

σx = σ 6= 0; τxy = τ 6= 0; σy = σz = 0; τxz = τyz = 0.

These values can be directly substituted into the 
relation for the reduced stress in a general coordinate 
system and we obtain

bar-type state of
stress

σred =

√
1
2

[
(σx − σy)

2 + (σy − σz)
2 + (σx − σz)

2 + 6
(
τ 2xy + τ 2yz + τ 2xz

)]

σK =
√

σ2 + 3τ 2The Mises’ plasticity condition valid for a bar-type state of stress is: 

Both of the presented plasticity criteria are equivalent in practical use. In analytical 
calculations, Tresca’s plasticity condition max τ is often used because of its simpler form.
Before using this condition, however, it is necessary to calculate the principal stresses and principal 
to order them in the decreasing sequence ( σ1 ≥ σ2 ≥ σ3), because one of the principal stress
stresses (σ2) absents in the used formula. The formula expressing Mises’ criterion is more 
complicated but this is no problem in computer solutions where it is used more frequently. 
Its advantage is that it was derived in the form based on the stress components in a general
coordinate system so that it does not require knowledge of the principal stresses.
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Brittle strength = a special case of brittle fracture with monotonically 
increasing load of the body.  

 Brittle fracture: ε < 0.001
 Quasi-brittle
 Quasi-ductile
 Ductile fracture: ε > 0.05

Factors influencing the magnitude of plastic deformation 
until fracture (brittle or ductile material behaviour): 

 Temperature – lower temperature means more brittle behaviour.
 Deformation speed – faster load means less plastic deformation,

i.e. more brittle behaviour.
 Stress state – more triaxial stress means more brittle behaviour.
 Corrosion
 Radiation (x- or gamma-radiation)

17.3. Brittle fracture – failure of a body without any macroscopic crack
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How to avoid brittle fracture? 

 Choice of material with transition temperature of brittle fracture being below the
operating temperatures

 Production technology – without macroscopic cracks

 Avoid impact loading

 Reduce stress concentration in notches, corrosion and radiation

Summary of experimental results – internal factors influencing the occurrence of brittle 
fracture in a given material are as follows: 

 Spherical part of the stress tensor (hydrostatic stress)

 Sign of principal stresses – positive values are more dangerous

 Occurrence of some small plastic deformation

 Magnitude of shear stress τρ and of normal stress σρ in a certain
characteristic section ρ.

For a multiaxial stress state, the failure is described by criteria of brittle fracture, 
which can be valid if  

 there is no initial macroscopic crack in the body

 the load is monotonically increasing

 initiation and propagation of the crack are instantaneously followed by
fracture – fast fracture process

 the crack propagation in unstable and cannot be influenced by any changes in
loads

 the stress state is homogeneous – otherwise an approximate validity only, because
the conditions are changing during the crack propagation
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Mathematical description of criteria of brittle fracture:

 Maximum principal stress criterion
The occurrence of the brittle fracture under the above conditions is given by the value of 
maximum principal stress of the respective stress state: 

mR1

where Rm means  ultimate stress (strength) in tension. 
This criterion is valid (corresponds to experimental results) only if all the three principal 
stress values are positive (multiaxial tension). 

 Mohr’s criterion
The occurrence of the brittle fracture under the above conditions is given by the values of 
normal and shear stresses in the section, in which the maximum shear stress is acting. 
Mathematical formulation of this criterion can be expressed in the following shape: 

m

mC

m R
R

R
 31        or   mR 31 

where Rm and RmC mean ultimate stresses (strengths) in tension and in 
compression, respectively. Their ratio χ meets always the inequality  χ < 1. 
This criterion is valid (corresponds to experimental results) only if at least one of the three 
principal stress values is negative. 
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 MOS criterion
This criterion is the only one, which is valid generally, independently of the stress state type 
and the signs of the stresses. It represents a combination of the previous two criteria and can 
be formulated mathematically as follows: 

  mR 311;max 
To avoid brittle fracture, a corresponding inequality must be met: 

  mR 311;max 
To quantify the margin of safety against the brittle fracture, reduced stress can be 
introduced (similarly to plasticity criteria) by the following formula:  

 311;max  redMOS

The reduced stress (a simplification of stress tensor valid under the specified conditions only) 
can be applied for calculation of the simple factor of safety (FOS) under multiaxial stress 
states using the formula: 

redMOS

m
R

R
kFOS




As materials in brittle state do not offer any margin of safety due to no plastic deformation (in 
opposite to materials in ductile state), the recommended range of the factor of safety against 
brittle fracture is much higher (3÷10).   
Note: Reduced stress σred is a fictitious value of a uniaxial tension stress giving the same factor 
of safety against the judged limit state with the multiaxial stress state in question. As it simplifies 
the tensor into one numerical value only, it can be valid for a certain failure criterion only (and 
for one type of failure, particularly here for MOS criterion of brittle fracture) and it is necessary 
to distinguish between various types of reduced stresses. 
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Graphical representation of the criteria of brittle fracture:

Maximum principal stress criterion:

Haigh space Mohr’s representation 
 Biaxial stress state   
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Mohr’s criterion:

mR 12 

mR2

mCR1

mCR2

mR 21 

mR1

mR

mCR

2

mR
2

mCR

22

31  
mR

22

31 mR




2

mmC RR 

 . 

 . 

p17 – 21

previous CONTENT next



 . 

MOS criterion:
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17.4. General and simple factor of safety

In the previous paragraphs, we introduced the factor of safety in the form

kk =
σK

σred

as a quantity which quantifies the safety against               . However, the influence of the 
particular stress components on the reduced stress is different, so that this factor of safety can 
correctly evaluate the safety only if the increase of all the stress components during loading 
and overloading is mutually proportional. Such a way of loading is graphically (e.g. in Haigh
stress space) represented by a straight line and it is called simple loading and overloading.

The factor of safety valid for the simple loading is called simple factor of safety and it can be 
calculated using the reduced stress. If the stress components are not mutually proportional 
(e.g. the increase of torque is not proportional to the increase of bending moment and 
therefore also increase of shear stress τ is not proportional to the increase of normal stress σ), 
the reduced stress cannot be used; under these conditions, the general factor of safety should be 
evaluated which takes the trajectory of loading and overloading into account.
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