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13. Simple flection

13.1. Definition

Simple flection is loading of a straight prismatic bar, if
—  bar assumptions are satisfied,

— cross sections rotate around an axis lying in the cross section and, consequently, -
Dar

deform, .
fssumption

— the only non-zero components of the inner resultants are bending moments Moy, MOZ,
— deformations of the bar are not significant from the viewpoint of element equilibrium.

Note: It results from the Schwedler’s theorem T' = dM,/dx that MO must be constant if
the shear force 7' = 0. This is exactly satisfied only at bars loaded by couples.

Since at the simple flection two of the components of inner resultants are non-zero

(Myy, M,,), the solution is more complex than in the case of other types of loading.
This type of flection is called general flection (sometimes also inclined or 3D flection).

To simplify the derivation, all the relations will be derived first for the so called ba-
sic flection (only one component of bending moment is non-zero), in particular for

M,, # 0, M,. = 0.
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13.2. Geometrical relations

We isolate a onefold elementary element €2; as a free body
from the bar and then again a threefold elementary one €23
from it. The element 2; deforms in such a way that the ad-
jacent sections t; and 1)s:
— rotate around an axis lying in the cross section, and
the original length dx of the element {23 changes by an
increment du,

— remain perpendicular to the deformed bar centreline, so that the right angles o and
0 of the element €2; and 23 do not change.

Since the cross section remains planar, according the bar assumpti-
ons, also after its rotation and it rotates around a straight line paral-
lel to the y-axis under conditions of basic flection (M,, = M, # 0), rotated
the displacements du are independent from y coordinate and they ¢T0SS -
can be described by an linear equation (an equation of a straight section;
line in (z,z) plane) du(z) = ay + byz. The following compo-
nents of the strain tensor correspond to this deformation:

—
I
ll’
]
A

— length strain in the direction of the bar centreline,

d
ex(2) = ZSEZ) =a+ bz,

— zero angular strains v, = v;, = 0.

In consequence of the transversal contraction, transversal strains ¢, = €, = —pe, come
into existence, different in magnitude in each point of the bar.
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In the case of simple flection, distribution of the length strains is linear throughout the
cross section and the angular strains equal zero.

A general triaxial strain state comes thus into existence in any point of the bar; this strain

e, 0 0
state is described by the strain tensor in the form 7. = | 0 ¢, 0 |.In contrast to
0 0 e,

the simple tension, the strain state is non-uniform throughout the cross section, the values
are different in each of its points.

13.3. Stress distribution throughout the cross section

If the material is Hookean (homogeneous, linear elastic), the distribution .
of the normal stress o, is also linear, similar to strain &,: ol
0.(2) = Ee,(2) = E(a + bz). c
. . . - E -
Shear stress is determined by the relation: T= 50 T+ ,u)’y = Gh.

Since vy = Vz» = 0, it holds also 7, = 7. = 0.

The other components of the stress tensor (o, 0., 7,.) equal zero because of the bar
assumptions. Therefore, the only non-zero stress component is the normal stress o, with par

a linear distribution throughout the cross section.

In the case of simple flection, a uniaxial stress state comes into existence in the points
of a bar but, in contrast to the simple tension, it is not uniform.
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13.4. Dependence between inner resultants and stresses

tatic
cquivalencd

The relation for stress o(z) can be derived from the equations
of static equivalence between the system of inner elementary
plane forces in the cross section odSi and their resultant ]\Zfoy
in the cross section 1 of the element €)y; we formulate this
equations in the local coordinate system acc. the figure. There
are three applicable conditions of static equivalence for a sys-
tem of parallel forces in a 3D space:

//adSzO, Moy://zadS, Moz:—//yadS —0.
P P P
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We substitute o = E(a + bz):

% E//(a+bz)d5’:0 = a//dS +b//zdS:0 = a=0,
! P P P
0

X| because ﬂ 2dS = U, = 0 in a centroidal coordinate system

—E//cH—bzzdS E(a //zdS +b// 22dS) = b:%}y
Yy

By substituting a and b in the relation for the stress we obtain

M, M,
=Fla+b)=FE=2%2 = |o=""z

EJ, J,

However, the relation is valid if and only if the third applicable condition of static equi-
valence is satisfied; this is the case in a principal centroidal coordinate system only:

M,
M, = E//a+bzyd8— /yzdS— Jnyz_o = J.=0
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Note:

For the non-zero bending moment M,, a similar relation holds for stress:

MOZ
ke

o=

Since both of these stresses are parallel to the x axis, we can calculate the resulting stress
for the general (inclined) flection by addition of them:

Moy Moz
o=—2——1.
5, Y
All these relations are valid in a principal centroidal coordinate system only. Therefore
the basic flection comes into being just then if the line of action of the bending moment is
identical with one of the principal centroidal axes of the cross section (e.g. with a symmetry
axis).

- —
general flexion = basic flexion by M, + basic flexion by M

e
.MO

Zy
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13.5. Extreme stresses

To simplify the description of the stress distribution in the cross section, we introduce
first the so called neutral axis, what is a straight line with the following properties:

— it lies in the cross section plane and contains its centroid,

— it holds 0 = 0 and, consequently, ¢ = 0 in all of its points,

— it divides the cross section into two parts, one of them having positive and the other
one negative stresses.

It is evident from the formula for stresses in basic flection (M,, # 0) that the neutral axis
is identical with the y axis, and, at the same time, with the line of action of the bending
moment. Since the stress distribution is linear, the extreme absolute values must be in
points with maximum distance from this axis.

_ M.,

Omax — T Zmax
Y
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with the maximum absolute value of z co- &
ordinate. The so called section modulus
W, [m3] can be introduced for the basic
flection; this modulus is defined as the ratio |
of the principal centroidal axial quadratic A i

I

Therefore dangerous points are the points b
1
|
I

M<

moment (related to the neutral axis y) and of
the maximum distance of an outline point
from the neutral axis y, W, = J,/#max). Then P
we obtain the following formula for the z ==
maximum stress: 2

M,
Umax - max .
J, W
y o

Warning! Section modulus is not additive. For instance for an annular
section, it must be calculated by subtraction of axial quadratic mo-

ments, while the maximum distance zy,.x = D/2 remains the same!

aD*  wd*

4
wood_ o —ex ™| (d
¢ % % 32 D

The evaluation of extreme stresses in general flection is much more complex.
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13.6. Strain energy

Under assumptions of the linear theory of elasticity, all the deformation work is trans-
formed into the reversible strain energy (A = W). The following relation was derived
in chapter 11.6. for strain energy of a threefold infinitesimal element under conditions of

uniaxial stress state
102

WQ3 = A (0dS) = AdSdx = i—dex
The strain energy of a onefold infinitesimal element{) ; can be obtained by integration of

the energy Wy, (after substitution o(z) = ]\g Y > for stress) throughout the area v:

2 M2
Lo s — / / 2450y — Mo
// vdS =55 J2 Sdv = 2EJ, dz,

because [[ z2dS = J,. The total strain energy accumulated in the bar of length [ equals

P
then the integral of strain energies of elements {2; along the bar length

W/WQI /2 Oydx

For the general flection (M,, # 0,M,, # 0), strain energy is given by Superposition of
contributions of both basic simple flections (from bending moment components Moy, M, .):

W =W, + W,
The relations are valid only for the principal centroidal coordinate system (.J,, = 0)!

ONTENT




plo — 10

13.7. Description of centreline deformations

If a straight prismatic beam is under flection, its centreline is bended and it creates the characteristicd
so called deflection curve. According to the bar assumptions, the cross sections remain
planar and perpendicular to the deflection curve, so that displacements of any point of

the bar can be calculated if we know deflections and slopes in individual points of

the centreline (deflections are displacement components perpendicular to the centreline);

therefore these characteristics are denoted as basic deformation characteristics of the

bar under simple flection. They can be calculated from the differential equation of the

deflection curve.
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During the deformation of a onefold inf- Y bar
initesimal element ();, the two adjacent secti- ’./d ‘.\
ons rotate mutually by the angle dy around 2P .

! > dp aroun, o Reutral axid
the neutral axis. Neutral axes in the indi- g N e

vidual cross sections create together a ne-
utral plane; in all points of this plane,
stresses and strains are zero. The length of a
threefold infinitesimal element Q3 (given by
the distance GH in the figure) changes
into GH’ by elongation and distortion of

the element.

To derive the differential equation of the
deflection curve, we assume again the ba-
sic flection with the line action of the [ [
bending moment identical with y axis

(M oy #0,M ,, =0).
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The element{23 with its centreline in the distance of z from the Ctrai
neutral axis had the length of rdy before deformation (i.e. the
same as the abscissa OA, the elongation of which is negligible)
and the length of (r+z)dg after deformation.

niaxial
stress state

T T
=
D
0
s

Then the length strain of the element() 5 is t
(r+z)dep —rde =z Hook’s la
893 = = —
rde

There is a uniaxial stress state under flection, and since we sup-
pose the basic flection with M,,, it holds

o M.,
EQs = E = E Jyz.

By comparison % = gjyz = % = %/[jy we can obtain the curvature % of the deformed
centreline, or the radiusyof curvature r Z:)f the centreline.
Note: B
Analogically for the latter component of bending moment M,., we can obtain the relation

1 M,

r EJ.

Moy(x)

Since the term B, (@) is constant along the centreline (given by assumptions of the sim-
Yy

ple flection), the centreline is deformed into a circular arch (deflection curve). In practice,

however, cases with M,(x) #const. are much more frequent; consequently % = const. and
the deflection curve is a general 2D curve. (The influence of shear force that must occur

if M,(x) # const. will be analysed in chapter 13.9.2.)
ONTENT next
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In mathematics, the following relation was derived
for the curvature of a planar curve representing the
function z = z(x)

2 = WV
T = SN §
r@) p ) e " wZ o
where w is the displacement of a point of the cent-
reline in z direction (i.e. deflection). By comparison 0

with the curvature derived above, we can obtain the
differential equation of the deflection curve
+w” M,

1+w?)3z EJ,
It is a general non-linear differential equation of the 2nd order that can be solved in an
analytical way in some special cases only.
Only small deformations are admissible at most of technical objects and structures; if the
slopes are ¢ < 0, 1rad, it holds w’ = tg ¢ = ¢ and w? < 0,01 can be neglected against 1.
Under assumption of small deformations, we obtain a common linear differential

equation of the 2nd order with a right-hand side; this equation can be solved by its

direct integration:
& y_ M,

w:_EJy.

The negative sign in the equation occurs in consequence of the introduced sign conventions
and orientation of coordinate axes.
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13.8. Deformation of the cross section

In consequence of the transversal contraction, the strains ¢, and €, are non-zero so that
the cross sections change under deformation. The calculation of changes in cross section
dimensions is more complex than in the case of the simple tension, because the strain
state is non-uniform. These changes, however, are mostly not significant in practice.

13.9. Fields of applicability of the theory of simple flection of bars
13.9.1. Influence of the cross section variability along the centreline

a) Continuously variable cross section

Let’s have a straight bar with a cross section which changes continuously along the bar
centreline; the bending moment is constant along the centreline and the principal axes of
all the cross sections are parallel (the bar is not screw-shaped).

‘ It was derived in chapter 11.10.1 that a shear stress occurs in the cross
( eiﬁﬁe 5 sections if N # 0. Similarly it can be derived for simple flection that a
variability of the cross section magnitude along the centreline induces

Vs Yo shear stresses in cross sections as well.

It holds here similarly to the simple tension that if the change in cross section magnitude is
small, also the shear stress will be small in comparison with the normal stresses (7 < o)
and this deviation from the bar assumptions can be neglected. The above relations of

plo — 14

deformatio

derivatio
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simple flection can then be used in calculations of stresses and deformation characteristics. pssumptions
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b) Stepwise changes in cross sections (notches)

The location with the maximum stress value is called the root of the notch. The maximum

stress value is calculated using the formula 0y,,x = @0, where « is the stress concentration
factor, o, is the nominal stress in the notch location, calculated using formulas of simple
theory of elasticity.

We can see the differences in stress distributions in the notch locations between two
examples of bars loaded in a) tension and b) flection:
a) fl? b) ¥ Jﬁo 1. under flection, the stress concentration can occur
il i i) simultaneously in both positive (tensile) and ne-
SN ] ! gative (compressive) parts of the cross section,
!5§ ~T~ &, T 2T W;A'ﬂ” 2. under flection, the notch location influences sub-
- > UI_ i stantially the stress concentration (the character
: % : of stress concentration is different in dependence
*1_:) © K'/ﬁo on the location of the notch in the cross section),
3. under flection, the maximum stress in the root of a - -
notch near the neutral axis need not to exceed the no- a) TF by ¥k NM,

minal stress at the circumference, while under tension
(because of the uniform stress state in the unnotched
cross section) the stress in the root of the notch is
always the highest in magnitude.
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13.9.2. Variability of bending moment along the centreline

The assumptions of the simple flection can be satisfied only in the case of a bar loaded
by isolated couples, if it holds:

— shear force T'(z) =0, BN N
— bending moment M,(x) = M = const. in the individual intervals, ‘M1| : 4_-|‘M2%

In practice, bars loaded by isolated forces or distributed loads in transversal direction are
much more frequent. In these bars, the shear force is non-zero and the bending moment
is not constant; the term beam is generally used for this type of bars. The stress state in
beams is of a more complex type:

— normal stresses o occur in cross sections, induced by the bending mo-

BN
ment M,, F{ E
T
M

— shear stresses 7occur in cross sections, induced by the shear force T .

Transversal loads result always in shear stresses in cross sections of the beam. ‘

The magnitude and distribution of the shear stresses in the cross sections with a general
shape of the outline and general direction of the shear force cannot be solved but using
methods of general theory of elasticity or finite element method.

ONTENT
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At the level of simple elasticity theory of bars, the following two cases can be solved:

1. cross section with one symmetry axis at least,
2. thin-walled cross sections - I, U, T profiles under assumption that

— the beam is prismatic,
— the beam surface is not loaded by shear loads.

The following formula (sometimes called Zhuravsky’s or

_ﬁ neutralni osa

T()Uyp1(2) b
b(2)Jy 7

T(z,2) =

shear formula) is used for calculation of shear stresses. y r
\e4

ﬁ/N

where Uy,y1(2) is the first (static, linear) moment of the

area 11 (z) with respect to the neutral axis y. 2

This formula was derived under assumption that the line of action of the shear force T is
identical with the symmetry axis z of the cross section and the shear stresses are constant
across its width (7(y) = const.). Using this formula, the following formulas for maximum

shear stresses (in centroid of the cross section) can be derived:

N
l T
. ) 3T -
a) in a rectangular cross section: Tyax = §§ :
T B
b) in a circular cross section: Tmax = 33 :
ONTENT
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Note: 1t is thus evident that the so called conventional shear stress 7, = 7'/, used some-
times in practice, underestimates substantially the shear stress magnitude. Additionally,
the assumptions of the shear formula are not satisfied in some of the profiles and the
extreme shear stresses are even higher in reality.

To calculate the deformation parameters using Castigliano’s theorem, the influence of the

2
shear force should also be comprehend in the strain energy. The formula A = 7~ was

plo — 1o

astigliano’s

derived for the strain energy density induced by shear stresses. If the shear stress induced []

by the shear force T acts in the cross section the strain energy of a onefold infinitesimal

element €); can be obtained by mtegra,tlon of this term throughout the cross section

o= ) tsie =g ] S

After some manipulations (We add S in both numerator and denominator of the fraction
and denote as J the term in brackets, which is function of cross section characteristics
only and is constant for a certain cross section) we obtain:

: 205 // byw1 dv = fg;dx

It holds for a circular section § = 32/27 = 1,185 = 1,2, for a rectangular § =1, 2.

Wa, =

The contribution of the shear force to the total strain energy of the beam with length [ |[Example 62

is thus:

l l
B BT ()
WT_O/WQI_QGO/SQS dz
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13.9.3. Beams with curved centreline

The normal stress distribution in the cross section of a beam with a curved planar centre-

line under basic flection is hyperbolic, in contrast to a straight beam where the distribution
is linear; the neutral axis is shifted from the centroid towards the center of curvature
of the beam. To compare the resulting stress values calculated using formulas for curved

beams o, and for straight beams o, (in a beam with
R being radius of curvature a h dimension of the
cross section in the plane of the centreline), the
dependency Ao (R/h) is repre-sented in the figure; A
o is calculated as follows:

Ao = -100 %.

The ratio R/h represents the inverse relative curvature of the beam, the value Ao is the
relative deviation of o, from o..
It is evident from the graph that the stresses in beams with low curvature

0, — 0y
O-Z

(h < R, ie. % > 1) can be calculated using formulas va-  Ag,
lid for straight beams; the relative error will be ~ 4% for [%]
R/h =10 and ~ 8% for R/h = 5. For the beams with high .
curvature (R/h < 5) the stress distribution is hyperbo- 40
lic (it cannot be replaced by a straight line), the extreme -
stress is higher and it must be calculated using a theory of 20
beams with high curvature (which is not included in this -
bachelor course) or, more frequently today, using the finite ()

element method.
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13.10. Solving problems concerning simple flection of beams

13.10.1. Free beam

We derived the relations for stress, deformation parameters and strain energy valid for a
bar under flection if the bar assumptions are satisfied. In this course, we restrict ourselves
to basic flection in practical calculations; then the following simplified formulas are valid:

U(Z) = Jy Z; Omax — WO) w EJy’

I
Moy MO, "no__ Moy_ _ ng
- W—O/2EJyd:c

To judge the limit states of beam deformation, we need to know the deflections or slopes
in some significant points of the beam centreline at least. There are many methods for
evaluation of these deformation parameters of beams; we introduce two of them:

— integration of the differential equation of the beam’s deflection curve (differential

approach),
— Castigliano’s theorem (integral approach).

ONTENT
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13.10.2. Differential approach

M,y (2)

The differential equation w”(z) = — L] can be solved by a direct integration; to be
y

soluble, it must be completed by boundary conditions. If the M,(z) distribution along
the beam centreline can be expressed by a single (continuous and smooth) functional
dependency, one differential equation of the 2nd order is sufficient for the solution; two
boundary conditions are needed to solve the integration constants.

The boundary conditions can be described by:

a) support deformation conditions — known deflections or slopes in the locations where
the beam is supported by the base,

b) symmetry of deformation, /

for © — % — w’ = ¢ = 0 (the tangential line of the de- ' l l l l l l ll

flection curve is parallel to the x axis)
Thanks to this fact, there are two possibilities of how to
express the boundary conditions at the beam in the figure:

=% /777777,

1. support conditions 2. symmetry of deformation
r=0 w=0 r=0 w=0
r=10 w=0 x = % w =0

c) geometrical bar assumptions (the bar centreline remains continuous and smooth du-
ring deformation). If the term M, /EJ, is expressed by different functional dependen-
cies in several intervals of the beam centreline, then we can formulate the conditions
of continuity and smoothness of the deflection curve on the boundaries of the inter-
vals.

ONTENT
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For instance, it must hold for the location where a change I I 1
in loads occurs (for x = a) v . l l % hssumptiong
—  the deflection calculated for the left-hand interval must

equal the deflection calculated for the right-hand inter- b ¢ 7y

val (continuity of the function) = w; =wy; ~T["u 7
— the slope calculated for the left-hand interval must @FEW\-—//

equal the slope calculated for the right-hand in-
terval (continuity of the first derivative of the
function, i.e. smoothness of the deflection curve)

= QY =9Yrr
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At beams with the term M,,/E.J, expressed by different dependencies in various parts of
the centreline, we can proceed as follows:

Problem 616

— We divide the centreline into intervals in which the I I I Iv V
term M,,/EJ, is expressed by a single (continuous ¢ l l l characteristicyg
y A,

and smooth) function dependency. The boundaries

Ag=—AFe- - - [ Al-+-- -~ B Lross sectio
of intervals are in the locations with changes in o ]
: . . 20 Wi=Wr  Wine=w /7777777 characteristic
loads, material or cross section characteristics. WA (PijPIIIIE (pm*(p A% -
) . : =01 | Pur=erv -
— We formulate a differential equation for each of the ’ eflection

. wWI—Wm - WivTWy Sp——
intervals. CI=Pr - Prv=ov =

— We formulate the support deformation conditions
resulting from the supports of the beam.

— For all the boundaries between intervals, we formulate the following two boundary
conditions for the deflection curve:
conditions of continuity (equality of deflections calculated for the left-hand and right-
hand side intervals) (w;(a) = wiy1(a)), Problem 622
conditions of smoothness (equality of slopes calculated for the left-hand and right-
hand side intervals) (;(a) = p;11(a))

Since two integration constants must be calculated for the solution to one differential
equation, a corresponding number (two times the number of intervals) of boundary con-
ditions are needed. For the correctness of these boundary conditions it is necessary to

M, ()

express the function YoB for all the intervals in the same coordinate system.
y
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13.10.3. Integral approach

The deformation parameters in some particular points of the centreline can also be eva-

luated using Castigliano’s theorem. véty.
The strain energy accumulated in the beam with length [ equals the sum of contributions
of bending and shear: Wl
W
W =Wy, + Wi = — /ng(x 5 /ZTZ(x)d
= = — _— x‘
Moy =T 9F Ty (@) T ) S(x)
To solve the displacement of the point J of action of the force F '7, we substitute the strain
energy into Castigliano’s theorem and differentiate the term in the general form:
wy = W Moy My g/ L oL,
oF; EJ, OF; GS 8F b}

In this procedure, we must take into account that the deflection w; is a global quantity
(it depends on the deformations of all the beam or even of all the structure). Therefore
the components of inner resultants must be expressed as function dependencies along all
the length of the beam centreline. At long and slender beams (I > 10h) the contribution
of the shear force can be neglected.

ONTENT



13.10.4. Comparison of differential and integral approaches

1) Differential approach:
It enables us

a) to solve also large deflections — using the equation valid for large deformations
:|:’LU// o Moy
(1+w?)z EJy
b) to solve the magnitude of deflection and slope in any general points of the beam,
c) to evaluate the magnitude of the extreme deflection even in the case that we do not
know the location of the extreme.

(only in certain simple cases),

Disadvantages: it does not comprehend the influence of shear force on the deflections and
slopes, and it is usually more time-consuming and mathematically difficult.

2) Integral approach (Castigliano’s theorem):
It enables us

a) to solve any deformation characteristic in a certain point of the centreline; if there is
no corresponding load in the point in question, we add a complementary force ﬁd =0
or a complementary couple My = 0 and we solve the task in the same way like in
the case of any other known external loads,

b) to comprehend the influence of the shear force T on deflections and slopes,

¢) to carry out the calculation more easily and faster than using differential approach,

d) to choose any (advantageous) coordinate system which can be different in each of the
centreline intervals,

e) to solve also curved and angular beams.
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Disadvantages:

a) it can be used only within the range of linear elasticity (small strains and deflections,

Hookean material, linear supports),
b) it solves only one deformation parameter in a particular point, it is difficult to be
used in searching for extremes.

13.10.5. Supported beam

In the surroundings of supports there is a region where the assumptions of simple flection

are not satisfied, because the support is not able to restrict only deflections and rotations

of the centreline points. This region cannot be solved using the formulas valid for simple |par

flection. If this region is decisive from the viewpoint of limit states, it should be solved

e.g. using finite element method.

Procedure of how to solve supported beams

1. We isolate the beam as a free body and introduce reactions in the locations of the
removed supports.
2. We formulate the applicable equations of static equilibrium.
3. We evaluate the degree of redundancy s = 1 — v. The following cases can occur:
a) s = 0 — the bearing of the beam is statically determinate - we continue with

par. 7. Problem 602
b) s > 1 — the bearing of the beam is statically indeterminate - we continue with
par. 4.
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4. We create a released structure and formulate the compatibility equations, i.e. the
support deformation conditions for deflections or rotations of centreline points, the
number of which must equal the degree of static indeterminacy.

5. We express the compatibility equations by means of loads using Castigliano’s theo-
rem. If the supports restrict longitudinal displacements of the bar, a non-zero normal

force is created in the bar and the onefold loading changes into a combined one
(flection + tension or compression). The compatibility equations can be:
a) homogeneous — the restricted kinematic parameter equals zero,
b) non-homogeneous — the restricted kinematic parameter differs from zero because
of the production inaccuracies (e.g. different height of supports, misalignment of
supports etc.),
¢) circumstantial — the beam can be either statically determinate or indeterminate

in dependence on the magnitude of deflection or rotation (e.g. a too high assembly
clearance can disable the function of the support).
6. We formulate a set of equations consisting of conditions of static equilibrium of the
beam isolated as a free body and compatibility equations of the released structure.
7. We solve the set of equations for support reactions.
8. We solve the stress state and deformation parameters in the same way as for a free
beam.

-+
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13.11. Examples and problems

Examples

Problem 601

Problem 625

Problem 627
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Problems

Problem 602

Problem 618

Problem 603

Problem 622

Problem 604

Problem 624

Problem 608

Problem 610

Problem 616

Problem 617
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