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16. Mathematical description of stress state

The stress state in a point of a body was defined as a set of general stresses in all sections
containing this point. For an unambiguous numerical determination of the stress state it is

sufficient to know the components of general stresses in three mutually perpendicular sections,

which can be suitably ordered in a square matrix describing a stress tensor Ti:

Oz Toy Tzz
To = | Tya Oy Ty
Tze Tzy Oz

With respect to the symmetry of this tensor which is based on the assumption of small
strains and shear stress equality theorem (7;; = 7;;), only six of the stress tensor compo-
nents are independent, i.e. three normal (o,, 0,, 0,) and three shear (7,,, 7., 7,.) stresses.

16.1. Principal coordinate system

First we mention an important property of all tensors, namely existence of a principal

coordinate system in which the out-of-diagonal components of the tensor equal zero.
The coordinate planes of the principal coordinate system are called principal planes.

Thus no shear stresses (7;; = 0) but only normal stresses act in the principal planes of a

stress tensor. We call them principal stresses and denote them by numerical subscripts

according to the convention oy > 09 > 03.
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The stress tensor T, in the principal coordinate system has the following form:

g1 0 0
717 = 0 09 0
0 0 g3

Principal stress is normal stress in such a plane in which the shear stresses equal zero
peneral stress

(i.e. general stress in the section is perpendicular to this section (f, = 7,)).

Principal stresses o;(i = (1, 2, 3)) can be calculated from the known components of the
stress tensor T, determined in any general coordinate system; we calculate them by solving
the characteristic equation of the stress tensor [1]:

0'? — 110'1-2 + IQUi - 13 = O,
where Iy, I, I3 are invariants of the stress tensor determined by the following formulas:

Or Ty Trz

2 2 2
L=0,+0y+0,, Iy=o0,0,+0,0,+0,0,— Ty — Tyz — Tazs Is=| Ty 0y Ty

Tex Tzy Oz
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16.2. Calculation of stresses in a general plane

If we need to calculate stresses fp,ap and 7, in a general
plane from the known principal stresses, it is advantage-

ous to isolate an elementary tetrahedron with three faces
in principal planes as a free body. There are three princi-
pal stresses oy, 09, 03 acting in the principal planes. The
section p is defined by the base vector of the normal line ¢,
the components of which in the principal coordinate system
are denoted as aj, ag, ag (a; — direction cosines of the nor-
mal of the plane p). From the static equilibrium equations
of the element we obtain - after neglecting volumetric forces

- the following relations for components of general stress in the section p:
foo = 0100, [fp, =020, [p, = 0303

We can simplify them by transcription in a matrix form:

fon op 0 O o
fp = To' - QL fpz = 0 09 0 . (0%)]
fp3 0 0 o3 Qs

Magnitude of the general stress can be calculated using the following relation for magnitude
of a vector:

fo= T2+ 2+ [2, = \Jolad + 0303 + o303
To predict the risk of limit states (failure), we often need to know the normal (7,) and
shear (7)) components of the general stress f,.
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Magnitude of the normal stress can be calculated as a projection of the general stress f,
into the normal direction of the plane p:

R 2 2 2
o, = [, €, = 0107 + 0205 + 0305

Determination of the shear stress would be more complex in this way because we do not
know the direction in the plane p in which the shear stress acts. The direction of the shear
stress, however, is not significant in analysis of limit states at isotropic materials. Therefore
we can calculate only the magnitude of the shear stress using Pythagoras’ formula (see figure

at the previous page)
T, =/ [} — o2,

into which we substitute the calculated magnitudes of stresses f, and o,,. (see £ )
see figure
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16.3. Stresses in octahedric plane

Among the various sections p containing the investigated (dangerous) point, the octahedric
plane is one of the most important from the viewpoint of limit states prediction; the
normal of this plane forms the same angles o/, with all the principal axes 1, 2, 3, so that
all the three direction cosines «, are also equal:
2 2 2 2 1
=0y =0a3=0, o +ao,taz=3a,=1 = a,=—F

V3

The von Mises (HMH) plasticity condition is just based on shear stress in this plane.
The magnitudes of the general, normal and shear stresses in the octahedric plane can
be calculated by substituting the direction cosines of the octahedric plane into the

relations for stresses in a general section p:
L 5 2 2 1
fo= 5(01+02+U3) Uo=§(g1+02+03)
1
To=\/f3 —05 = 3 (01— 09)* + (02 — 03)? + (01 — 03)?
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16.4. Graphical representation of stress state

In this chapter we introduce another important property of tensors which is the possibi-
lity of their graphical representation; it is carried out in the Mohr’s plane where diagonal
components of the tensor (i.e. components on the principal diagonal of the matrix repre-
senting the tensor) are represented as abscissa (horizontal coordinate — normal stresses in
the case of a stress tensor) and out-of-diagonal components are represented as ordinate
(vertical coordinate - shear stresses in the case of a stress tensor).

Uniaxial stress state was represented in this way
in the chapter concerning simple tension and shear

stress state was represented in the chapter concer- ﬁh
ning simple torsion. As it is evident from the fi- o) 5
gure, the radius vector of a point in the Mohr’s 03
plane of stresses determines the general stress f,

in the given section p, defined by the components
o, and 7,.
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The following statement was proven in literature (e.g. in [1]).

If the stress state in a point of the body is determined by principal stresses o1, 03, 03, the
points representing the general stresses f, (p is any plane containing the investigated
point) lie in the hatched region of the Mohr’s plane among the three Mohr’s circles
including the boundary.

The hatched region in the figure including also
all the three boundary circles represents thus the
stress state in the point of the body.

Principal stresses o; and o3 are the extreme nor-
mal stresses in the point of the body, extreme

shear stresses are

N

Tp

Tmax

O (&) O,
01 — O3 3 I p

Tmax — 9 = —Tmin

Tmin

and they act in those sections where normal stress o)t 03
o1 g 03 2

equals o, =

16.5. Specific types of stress states

In the previous chapters, we analyzed stress states in which the principal stresses were
mutually different and all of them had a non-zero magnitude, i.e. 01 # 09 # o3 # 0.
However, we often meet cases in which some of the principal stresses are zero or mutually
equal. The Mohr’s representation offers us a fast and illuminating idea on the stress state,
incl. the extreme components of stresses.
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16.5.1. Triaxial stress state

1) general
R VX o N
63 62 03 G2 G3 O
2) half-uniform a) b)
a) oy =09#0, 03#0 Tp To
' ? ’ ’ Sp cp\
b) 0'2:0'35‘&(), 0'17£O G3 G1=02 G3=09 G4
3) uniform a) b) 0
T T T I
G1=02=03 G{=02=03 01=05=03
tension Zero compression

In the case of the uniform triaxial stress state, there is no shear stress in any section.
Therefore limit state of elasticity cannot occur under the condition of this stress state; it
is evident from the plasticity criteria which are based on some shear stress component in
all cases.
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16.5.2. Biaxial (plane) stress state

one of the principal stresses equals zero

1) general

b) 09 =0, o1#03#0 c3 o3 03 62 03 62

c) o1=0, o2#03#0
2) uniform (equibiaxial stress)

T
a) 03=0, o1 =0#0 hcp /\]p

b) o1 =0, 0'2:(737&0 61702 62703
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3) bar-type

This type of stress state can be found in all bars T

(i.e. rod-like bodies, e.g. columns, beams, shafts etc.), -

therefore we analyze it now in greater detail. This stress TS o Txy

state is determined by normal and shear stress compo- | . = 57 65 Jo1 5
s p

nents in the cross section of the bar

0, =0F#0,T, =7#0,
while all the other components of the stress tensor equal zero. Let’s substitute this stress
components into the characteristic equation of the stress tensor to calculate the principal
stresses which will be necessary for prediction of limit states (failures):

U? _[101‘2_‘_]20—1'_13 =0

Tyx
N

2 2 2

2
I :O'gc‘f'O'y"‘O'Z:U I, :Ux0y+0ygz+0xaz_T;vy_Tyz_Tzz: -7
Or Tay Taz o 17 0
Is=| 7Ty o0y 7y |=|7 0 0]|=0
Tox Tzy O 0 0O

1 I\?
0PN+ Lho—I3=0 = o(0®>~Lo+L)=0 = 0;=0, o111 = = £ (1) — I

2 2
after substituting /; = o and I, = —72 we obtain
o o\?2 o o\?
= — 2 — - _ _ 2
o1 2—{— <2> + 74, 09=0, o3 5 (2) + 7.

As the square root expressing the radius of the Mohr’s circle is always positive, it reads
o1 > 0 and o3 < 0, so that the calculated stresses meet the relation o1 > 09 > 03.

ONTENT

plo — 10

strain
hssumptiong



plo — 11

4) pure shear

It is a special case of the plane or bar-type stress states for all . T
the normal stresses are zero o; = 0 = 0. Then it reads for principal
stresses P : Gp
01 = —03 =T, o9 =0. 63 Gy O
This type of stress state occurs e.g. in bars under simple
torsion.
16.5.3. Uniaxial stress state
Two of the principal stresses equal zero
a) b)
N T, Tp
a) tensile o7 >0, o0y =03=0 S, S,
b) compressive 03 <0, o3 =0y=0 G,=03 o1 63 G102
16.5.4. Zero stress (stress-free) state
T
p Gp
01 :0'220'3:0 G1=02=03

ONTENT





