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12. Simple torsion

12.1. Definition

Simple torsion is loading of a straight prismatic bar, if

– bar assumptions are satisfied,
– cross sections do not deform, they only mutually rotate around the bar centreline,
– only non-zero component of the inner resultants is torsion moment (torque) Mk,
– deformations of the bar are not significant from the viewpoint of element equilib-
rium,

– cross section is axisymmetric (circle or annulus).

bar
assumptions

Notes to the definition

In the beginning of development of the theory of elasticity of bars, the cross sections were
not limited to the axisymmetric ones. The increasing resolution level (development of
measuring equipments), however, brought findings that the cross sections remain planar
(with a sufficient accuracy) only if the cross sections are axisymmetric; in contrary, a
significant warping occurs at all the other cross section shapes. Therefore the formulas
derived below are not valid for non-axisymmetric cross sections; they can be solved
– using methods of general theory of elasticity (bars with cross sections having the
following shapes: equilateral triangle, ellipse, circle with eccentric circular hole),

– using analytical methods (rectangle, square),
– using the finite element method (any shapes).

In contrast to the simple tension theory where we distinguished between tension and
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compression pursuant to the orientation (sign) of the normal force N, the orientation of
the torsion moment is not significant; the body made of an isotropic material behaves in
the same way for both orientations of torques.
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12.2. Geometrical relations

Since we deal with the bars of axisymmetric cross sections only, we can advantageously 
use a cylindrical coordinate system with coordinates x, r and ϕ in axial, radial and cir-
cumferential directions, respectively. It can be stated on the deformation of the onefold 
(Ω1) and threefold (Ω3) infinitesimal elements during the loading process:

– the distance dx of the cross sections ψ1 and ψ2 re-
mains preserved, so that the length strain in the di-
rection of the bar centreline εx = 0 equals zero (under
assumption of small strains),

– dimensions of the cross sections do not change so that
the length strains in radial (εr = 0) and circumferen-
tial (εϕ = 0) directions equal zero,

– since the cross sections remain planar, the right an-
gle between the radial and axial directions remains
unchanged (therefore γxr = 0),

element

strain
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– angular strains γϕr are zero in a consequence of the axisy-
mmetric character of deformation,

– faces of the element Ω3 rotate mutually by the angle dϕ
what results in the non-zero angular strain γxϕ; the distri-
bution of this strain throughout the cross section can be
obtained by expressing the displacement ÂA′ of a point A
in a general cylindrical section defined by the radius ρ :
ÂA′ = dxγxϕ what can be expressed dually by the geome-
trical parameters lying in the cross section: ÂA′ = ρdϕ.

γxϕdx = ρdϕ ⇒ γxϕ = ρ
dϕ
dx

⇒ γxϕ = γ = ρϑ,

where ϑ = dϕdx is the relative twisting angle being con-
stant for the given cross section.

The angular strain γxϕ = γ is the only non-zero component of the strain tensor in the
case of the simple torsion; the distribution of this strain throughout the cross section is
linear with the zero value on the bar centreline (γ = ρϑ).

A specific deformation state occurs in the bar, denoted as shear strain state;

it can be described by the strain tensor in following shape Tε =


0 γ
2 0γ

2 0 0
0 0 0

 . Tε

previous CONTENT next



p12 – 5

12.3. Stress distribution in the cross section

The stress distribution throughout the cross section can be obtained using constitutive
relations valid for the Hookean (homogeneous, linear elastic) material in the shape σ = Eε
in the case of the uniaxial stress state and τ = Gγ in the case of the shear stress state. geometrical

relationsIt holds for simple torsion:
εx = εr = εϕ = 0 ⇒ σ = 0,
γxr = γϕr = 0 ⇒ τxr = τϕr = 0,
γxϕ = γ 6= 0 ⇒ τxϕ(ρ) = τ(ρ) = Gγ = Gρϑ.

Under simple torsion, shear stresses come into existence in the cross section; the distri-
bution of these stresses throughout the cross section is linear with zero value on the bar 
centreline. Normal stresses equal zero.

previous CONTENT next



p12 – 6

stress state
The stress state in a point of the body, which is determined
by an only one shear stress component, is denoted as shear
stress state.
A shear stress τxϕ in a section containing the bar centreline
corresponds to the shear stress τϕx in the cross section ψ; both
of these stresses are equal in magnitude (principle of shear
stress equality):

τxϕ = τϕx = τ

shear stress
equality

The shear stress state can be expressed in the
following matrix form of the stress tensor, or repre-
sented on the threefold elementary brick or in the
Mohr’s plane.

Tσ =

 0 τ 0
τ 0 0
0 0 0



stress tensor

Mohr’s plane
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12.4. Dependence between inner resultants and stresses
static
equivalenceThere is an only one applicable equation of static equivalence

between the system of inner elementary plane forces in the
cross section represented by the shear stress τ and their resul-
tant ~Mk; we use this equation to determine the dependency
of shear stresses in the cross section on the inner resultants
and on the geometrical characteristics of the cross section:

∑
Mx : Mk =

∫
ψ

dMx =
∫
ψ

ρτdS =
∫
ψ

Gϑρ2dS = Gϑ
∫
ψ

ρ2dS = GϑJP ,

where JP is the polar quadratic moment of the cross section. JP

By simple manipulations we obtain further relations from this equation: geometrical
relations

stress
- relative twisting angle ϑ = Mk

GJP
- angular strain γ = ρϑ = Mk

GJP
ρ

- shear stress τ(ρ) = Gγ ⇒ τ(ρ) = Mk
JP

ρ
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12.5. Extreme stress

The shear stress τ(ρ) = Mk
JP

ρ will be maximal in those locations of the cross section τ(ρ)

where the radius is maximal, i.e. on the outline of the cross section:

τex =
Mk

JP
ρex =

Mk

JP
ρ ex

=
Mk

Wk

,

where we introduced the torsion modulus of the cross section Wk =
JP
ρex .

The torsion modulus of the cross section

– for a circular section

Wk =
JP
ρex
=
JP
R
=
πR4
2
R
=
πR3

2
=
πD3

16

– for an annular section

Wk =
π
2 (R

4 − r4)

R
=
πR3

2

[
1−

(
r

R

)4]
=
πD3

16

1− ( d
D

)4
Warning! Wk is not additive, in contrast to the quadratic moments
(there is ρex = R in the denominator in all cases, therefore the mo-
dulus of the small circle Wk2 cannot be subtracted from the modulus
of the large circle Wk1).

quadratic
moment
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12.6. Strain energy

Under assumptions of the linear theory of elasticity, all the deformation work is transfor- linear theory
med into the reversible strain energy A = W .

During the rotation of the the threefold elementary ele-
ment Ω3 of the length dx by angle dϕ, the inner elemen-
tary shear force τdS~j acting on element Ω3 does the work

AτdS =
1
2
τdSÂA′ =

1
2
τdSγdx.

The strain energy WΩ3 of the element Ω3 (after substitu-
tion of the constitutive relation γ = τ

G) and the strain
energy density Λ (related to a unit volume dSdx) equal:

element

geometrical
relations

Hooke’s law

WΩ3 = AτdS =
τ 2

2G
dSdx,

Λ =
WΩ3
dSdx

=
τ 2

2G
⇒ Λ =

1
2
τγ =

1
2
Gγ2.

Note:
The formula for the strain energy density is analogical to the formula derived for the
simple tension. tension
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The formulas hold generally for any shear stress state. The strain energy WΩ1 of a one-
fold elementary element can then be evaluated by integration of the following relation

throughout the cross section ψ (and by substituting τ = Mk
JP

ρ, JP =
∫∫
ψ
ρ2dS)

WΩ1 =
∫∫
ψ

WΩ3 =
∫∫
ψ

τ 2

2G
dSdx =

∫∫
ψ

M2
k

2GJ2P
ρ2dxdS =

M2
k

2GJ2P
dx
∫∫
ψ

ρ2dS =
M2

k

2GJP
dx,

The total strain energy accumulated in a bar of length l is

W (l) =
l∫
0

WΩ1 =
l∫
0

M2
k

2GJP
dx.
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12.7. Expression for deformation characteristic of bar centreline

The deformation of the bar is described by the angle of mutual rotation (twisting) dϕ of
two adjacent sections ψ1 and ψ2 of the element Ω1 ϑ(ϕ)

ϑ(Mk)dϕ = ϑdx = Mk
GJP

dx.

The rotation angle ϕ of the cross section cutting away the finite
element Ω0 is determined by the integral along the length of
this element

ϕ(xR) =
xR∫
xm

Mk(x)
GJP (x)

dx,

where xR is the coordinate of the gravitational center of the
section in question, while xm is the coordinate of the referential
section (usually fixed, having therefore zero rotation angle).

If it holds Mk(x) =const., GJP (x) =const. in a certain part of the centreline and if we
locate the origin of the used coordinate system to the gravitational center of the section
with zero rotation angle (xm = 0), then

ϕ(xR) =
MkxR
GJP

, GJP is denoted as the torsional stiffness of the cross section.

12.8. Deformations of the cross section

Neither dimensions nor the shape of the cross sections do change under conditions of bar
assumptionssimple torsion. If this is the case, then the assumptions of the simple torsion would be
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violated and the above theory cannot be valid (e.g. warping-buckling of the cross section
by a loss of shape stability in torsion of a thin-walled tube).

12.9. Solving problems concerning simple torsion of bars

12.9.1. Free bar

We derived the relations for stress, deformation parameter and strain energy valid for a
bar under torsion if the bar assumptions are satisfied. bar

assumptionsIt holds for bars with circular or annular cross section:

τ

ϕ

W

τ =
Mk(xR)
JP (xR)

ρ; τex =
Mk(xR)
Wk(xR)

; ϕ(xR) =
xR∫
0

Mk(x)
GJP (x)

dx; W (l) =
l∫
0

M2
k (x)

2GJP (x)
dx.

tension

centreline
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If Mk(x), S(x) or G change along the bar centreline
(in the way, however, that does not violate substan-
tially the assumptions of the simple loading), then
the bar centreline must be divided into intervals (si-
milar to the simple tension) in which each of the
above quantities is expressed by a single (continu-
ous) relation. The borders of the intervals are in those
points of the centreline, where a change occurs in the
functions describing the distribution of G(x), Mk(x)
or JP (x) along the centreline.
The shear stress distribution in the cross section is
linear with the extreme value on the outline in the
case of simple torsion. Therefore all the outline points
of the dangerous cross section are dangerous points
(with the same extreme value of safety factor).

τex

dangerous
cross section
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The rotation angle of the cross section can be calculated:

– using the derived relation for the twisting angle of the cross section, the gravitational
center of which has coordinate xR:

ϕ(xR) =
xR∫
0

Mk(x)
GJP (x)

dx

twisting
– using Castigliano’s theorem – the twisting angle ϕB of the point of action of a
couple ~MB in the plane of its action equals Castigliano’s

theorem

ϕB =
∂W

∂MB

=
l∫
0

Mk(x)
GJP (x)

∂Mk(x)
∂MB

dx.

Both of these relations are equivalent, the partial derivative ∂Mk(x)
∂MB

usually equals ±1,
so that the results can differ in the sign only. The limit state of deformation is determined limit state of

deformationby the value of the twisting angle ϕM inadmissible in operation, the safety factor related
to this limit state can be calculated using the formula kϕ =

ϕM
ϕmax . safety factor

The safety factor related to the yield limit can be calculated using the formula kK =
τK
|τmax|

.

The yield stress in tension σK cannot be used here as the limit value, shear yield stress
must be used instead. In practice, this value is not measured but calculated from the
relation τK =

σK
2 based on the Tresca’s (max τ) plasticity criterion.

previous CONTENT next



p12 – 15

12.9.2. Supported bar

The bearing of a bar under torsion is statically determinate, if rotations of the cross Problem 501
section are restricted in one point of its centreline. redundancy

The free body diagram (for both of the presented
bars loaded only by couples ~Mi in parallel planes,
the only non-zero component of support reactions
is then the couple ~MA) shows that there is only one
applicable equation of static equilibrium

∑
Mx = 0 : MA −

n∑
i=1

Mi = 0

s = µ − ν = 1 − 1 = 0 ⇒ statically determinate
bearing.

All the other types of bearings of bars loaded in torsion are statically indeterminate.
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The solutions to supported bars loaded in torsion can be carried out according the algo-
rithm presented in the chapter 11.11.2. Supported beam. It must be, however, taken into algorithm
account that

– the moment equation related to the
x-axis

∑
Mx = 0 is the only one ap-

plicable condition of static equilib-
rium,

– the compatibility equations are de-
termined by rotation angles of the
cross sections around the bar centre-
line in such a number of points that
equals to the degree of redundancy.
The compatibility equations (sup-
port deformation conditions) can be
homogeneous, non-homogeneous or
circumstantial.

Example 507

Problem 503

Problem 505

Note:

If the bearing of the bar consists of both rigid and flexible supports, a rigid support
should be preserved in released structure (then the body remains immovable as a whole)
and non-homogeneous compatibility equations should be formulated for flexible supports;
otherwise the bearing of the released structure would not be immovable and the problem
of how to distinguish between movements of the whole body and deformations should be
solved additionally. The compatibility equations are dependent on the load only, there is
usually no influence of temperature changes and production inaccuracies. If a significant
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change in temperature or length inaccuracy occurs at a statically indeterminate bar loaded
in torsion, a non-zero normal force occurs and the onefold loading of the bar is changed
in a combined loading (torsion + tension or compression).

– Also at bars under torsion the problems of 
notches must be taken into account, be-
cause stress and strain concentrations occur 
there. The extreme stress value in the notch 
root can be calculated using the formula 
τex = τn,

Problem 502

Problem 504

Problem 506

where

– α is a stress concentration factor evaluated from the graphs (nomograms) that have
been based on calculations (finite element method) or on experiments (photoelasti-
cimetry) for various shapes of notches,

– τn is the nominal stress in the notch location calculated using the theory of simple
torsion. α graphs

12.10. Examples and problems
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Examples

Problem 507

Problems

Problem 501 Problem 502 Problem 503 Problem 504 Problem 505

Problem 506
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