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15. Buckling and stability

One of the simple loads we dealt with above was simple compression. One of the basic compression
assumptions was that cross sections of the bar mutually only come near (or draw apart
in the case of tension).

However, if a slender bar is loaded in compression (then we
call it usually a column) its real behaviour is different. Bey-
ond a certain load the column begins to bend and this ben-
ding is as pronounced that it becomes the substantial type
of deformation. It means that the type of substantial de-
formation changes during the loading process. While in
the initial phase of the loading, shortening of the column
is substantial (and no or only a negligible bending occurs),
under higher loads the situation is opposite - the bending
is substantial and the shortening becomes less important.
The boundary between these two phases is denoted as limit
state of shape stability or buckling.

limit state

The limit state of buckling is the state in which the type of the substantial deformation
of the column is changed.

Problem 701
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15.1. Buckling of an ideal free column

We analyse a column under the following assumptions:
a) the centreline of the column is perfectly straight in the unloaded state,
b) the column is prismatic and non-screw-shaped,
c) the cross section is thick-walled (all the dimensions of the cross section are on 
the same order),

d) the column is loaded by two isolated forces F (being in static equilibrium) acting in
centroids of the column facings; the lines of action of these forces are identical with
the centreline of the column in the unloaded state,

e) the material of the column is homogeneous. isotropic and perfectly (without any
limitations) linear elastic (σK →∞),

f) during the whole loading process the bar assumptions of simple loading are valid. bar
assumptionsMeeting the above assumptions is characteristic for ideal loading of an ideal bar.

The objective of the solution is, in the first place, to determine when shortening is the
substantial deformation of the column an when, in opposite, bending is more significant.
Therefore we limit ourselves on the significant components of inner resultants:

shortening - normal force ~N
bending - bending moment ~Mo

Stress states and deformations of the bar under compression without bending have been
analysed in chapter 11. Simple tension and compression. Now we focus on flection. compression
From the above methods of calculation of deformation under flection, only the differen-
tial equation of the deflection curve can be applied, namely in the form valid for large
deformations.
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Moreover, for the isolation of an element of the bar as
a free body, the deformed shape of the bar must be
taken into account (because in the undeformed shape,
there is no bending moment!).
As a consequence of the deflection of the deformed cen-
treline, shear force ~T and bending moment ~Mo act in
the cross sections (in addition to the normal force ~N).
Therefore the bar is loaded by a combination of com-
pression, shear and flection; as it is, however, long and
slender (otherwise there would be no bending), ben-
ding load is the most substantial, while the other two
components of inner resultants are negligible.

deflection
curve

element

As we assumed the bar to be homogeneous, prismatic and non-screw-shaped, the deflection
curve will be an in-plane curve.

We express the bending moment Mo(x) from the moment equilibrium equation of the bar
element and substitute it in the differential equation of the deflection curve valid for large
deformations: deflection

curveMo(x)− Fw(x) = 0 ⇒ Mo(x) = Fw(x)

It is evident from the relation that the bending moment and, consequently, stresses in the
bar are function of the deflection w; therefore stresses and deformations cannot be solved
separately as it was possible in the linear theory of elasticity.

w′′

(1 + w′2)3/2
= −Fw(x)

EJ
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The general solution to the above differential equation of the 2nd order includes two
integration constants; we must formulate two boundary conditions to determine their
values.

x = 0 w = 0
x = ld w = 0

The solution to the differential equation with the 
above boundary conditions is not realisable, be-
cause we do not know the real distance ld between 
the ends of the bar which is less than the len-
gth l of the bar. Lagrange solved this problem by 
neglecting this difference (for l = ld). We intro-
duce only the result of the Lagrangean solution 
in the form of dependence of the maximum de-
flection w max on the load F .

In the figure you can see the critical force of buckling Fkr defining the following intervals:
F < Fkr - the bar is shortened only, there is no deflection,
F > Fkr - the bar is either only shortened, then it is in a labile equilibrium

(branch No 1 in the figure), or only bended and then it is in a stable
equilibrium (branch No 2 in the figure),

F = Fkr - the stable shortening changes into instable and bending becomes the
stable deformation state; it is the point of equilibrium bifurcation.

The point of equilibrium bifurcation represents the limit state of buckling of an ideal
bar under ideal compressive load.
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The Lagrangean solution is mathematically very difficult and not suitable for practical
use. Therefore we solve the above differential equation of the deflection curve under as-
sumption of small deformations (w′ � 1⇒ 1+w′2 .= 1). It is evident from the figure that
this assumption can be valid until the force reaches the critical value Fkr; in this range
deflections are negligible. It is not possible to determine the deflections of the bar after
its buckling by this simplified solution but only the values of the critical force at which
the buckling (limit state) occurs. Thus we solve the differential equation of the deflection limit state
curve in the form:

w′′ +
Fw(x)

EJ
= 0.

As it holds ld
.= l, the boundary conditions can be expressed in the form

x = 0 w = 0
x = l w = 0

By denoting p2 = F
EJ it can be transformed into the normalised form

w′′ + p2w = 0,

for which the solution is known, among others, in the goniometric form

w = C1 sin(px) + C2 cos(px).

Integration constants can be determined from the above boundary conditions:

w(0) = 0 : 0 = C1 sin 0 + C2 cos 0 =⇒ C2 = 0
w(l) = 0 : 0 = C1 sin(pl) =⇒ C1 sin (pl) = 0
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The second condition will be met if

a) C1 = 0 =⇒ w = 0 with any sinus function argument =⇒ the bar remains straight
under any load F , it corresponds to the branch No 1 of the Lagrangean solution
(labile equilibrium); this situation cannot occur in practice because of imperfections
of a real bar, but we can obtain it as an unrealistic result of a numerical solution
(e.g. using FEM).

b) C1 6= 0 =⇒ sin(pl) = 0 =⇒ pl = kπ for k = 0, 1, 2, . . .

We substitute for p : l

√
F
EJ = kπ =⇒ F = (kπ)2EJ

l2
for k = 0, 1, 2, . . .

– k = 0 : F = 0 – the bar is unloaded in this case and there is no reason for
it to deform, therefore w = 0.

– k = 1 : F = Fkr = π2EJ
l2

6= 0 =⇒ w 6= 0 , the deflection is uncertain,
because the condition is met for any C1 value. By comparison of this result with
the general solution we can see that they are in agreement in the surroundings
of the point Fkr for very low deflections, because the tangent line to the curve
of w dependence is perpendicular to the F axis in this point. It means, however,
that we obtained the exact critical force value Fkr from this approximate solution
(valid however for an ideal and ideally loaded bar only).

– k > 1 ⇒ F > Fkr and the deformation state (see figure)
would be unstable so that it cannot occur in a real structure.
The stability of this deformation state can be achieved in a real structure by 
supports (deflection constraints) in some points of the bar; the critical force value 
can be substantially increased in this way. At a free bar, however, the only 
stable state is the deflected state under load Fkr.
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The above analysis enables us to formulate the following conclusion:

If we solve the differential equation of deflection curve under assumption of small de-
flections (w′2 � 1), we obtain the correct value of critical force Fkr at which equilibrium
bifurcation occurs but we are not able to determine the deflections of the bar for the load
values F > Fkr.

For the correct calculation of the critical force, it remains us to
determine the plane in which the bending happens. It will be that
plane for which the critical force Fkr is minimal, because in all other
planes the bifurcation point would be achieved under a higher load.
As the critical force Fkr is proportional to the moment of inertia of
the cross section                   , it will be minimal for the lower 
of both of the principal moments of inertia (J = J2). It means that 
the neutral axis of bending is identical with the axis with respect 
to which the minimal moment of inertia J2 is achieved. The 
deflection occurs in the direction of the J1 axis, because bending 
in other directions would not occur but under a higher loading 
force. Therefore the deflections occur in the direction of the lower 
of both lateral dimensions for the bar in the figure having 
rectangular cross section.

quadratic
moment

neutral axis
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15.2. Critical force of buckling at a supported bar

Till now, we analysed the simplest case - a free bar loaded by two isolated forces being in 
static equilibrium on a common line of action. The following relation for the critical force 
of buckling Fkr was derived for a supported bar (e.g. in [1])

Fkr = α2
EJ2
l2

or Fkr =
π2EJ2

l2red

.

The parameter α is determined by the supports of the bar (it holds α = π for a free bar), 
the reduced length lred can be determined according the figure. The reduced length of the 
supported bar equals to the length of a free bar having the same critical force value as the 
analysed supported bar. As the bending moment equals zero in the ending points of a free 
bar even in the deformed state, the reduced length equals to the lowest distance between 
two points with zero bending moment on the deflection curve of the analysed supported 
bar.
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The derived relations hold for an ideal bar under ideal loads; the safety factor for the limit
state of buckling of the bar can be calculated using the formula

kV =
Fkr

F
.

If deviations from the above assumptions of an ideal column are negligible, this value can
be used also for safety factor calculation of a real column. However, higher safety factor
values should be chosen, usually kV ∈ 〈3; 5〉. On the other side, if the deviations from the
above assumptions of an ideal column are substantial, a continuous increase of deflections
occurs since the very beginning of the loading process; it is a combination of compression
and flection and the limit state of buckling cannot occur at all.

15.3. Compressive load of a column of a real material

Till now we assumed that the material behaviour is linear elastic without any limitations, 
so that neither plastic deformations nor fracture occur. Real materials are either ductile 
with a pronounced plastic deformation when yield stress σK is achieved, or brittle, at which
a brittle fracture suddenly occurs if |σ| = σRd. In the equilibrium bifurcation point, the brittle

fracturestress achieves the magnitude

σkr =
|N |
S
=

Fkr

S
= α2

EJ2
l2S
= α2

E

λ2
, where λ =

l√
J2
S

=
l

i
is the so called slenderness ratio.
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The quantity i =
√

J2
S is called radius of gyration and it serves for comparison of the

slenderness of columns with different shapes of cross-sections.

The graph of the dependence of the compression stress σkr in the equilibrium bifurcation
point on the slenderness ratio λ of the column is a hyperbola of higher order (Eulerian
hyperbola). The derived relation for the critical force of buckling holds only in the case
that the critical stress σkr is less than the limit of the linear material behaviour. The
critical slenderness ratio of the column corresponds to the point in which both of these
stress values are equal. The critical slenderness ratio is denoted λR or λK for brittle and
ductile material, respectively.
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a) Brittle material:

The buckling can occur if σRd > σkr = α2 E
λ2
, i.e. for slenderness ratio of the column

λ > α

√
E

σRd 
= λR. For λ < λR the failure of the column by brittle fracture comes into

being.
b) Ductile material:

The elastic buckling can occur if σK > σkr = α2 E
λ2
, i.e. for slenderness ratio of the

column λ > α

√
E
σK
= λK . For λ < λK the limit state of elasticity is achieved before

the buckling can occur. Also in this case buckling can come into being if the load
continues to increase but it is plastic buckling already and the derived relations do
not hold any more.

When solving tasks with columns we must decide which of the possible limit states comes Example 702
into being as the first. Let’s present an example of a column made of material in ductile
state. In common structures we allow neither plastic deformations nor buckling. Then the
following statements are valid:

a) for λ > λK ⇒ the limit state of buckling is decisive, Fkr = α2EJ2
l2
and the safety

factor corresponding to the buckling will be kv =
Fkr
F ,

b) pro λ < λK ⇒ the limit state of elasticity is decisive, and the safety factor corre-
sponding to the limit state of elasticity will be kK =

σK
σmax . Problem 701
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15.4. Examples and problems

Examples

Problem 702

Problems

Problem 701
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