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10. Simple elasticity theory of bars

The objective of mechanics of materials is the solution to problems related to stress states,
deformations and failures of components of technical objects; these components are often
very complex in shape. The evaluation of stresses and strains in bodies with a complex
shape was made possible by use of modern computers and numerical methods. Earlier,
only solutions to some bodies with a simpler geometry were possible, namely under many
further limitations. limitations

Now we start with the simplest model body – a bar. In a common language a bar is
understood as a

”
long and slender“ body. Here it is necessary to define the bar more

preciously; it is a generalisation of model bodies such as beam, column, shaft, strut etc.,
each of which represents a special case of a bar, as it will be specified later. The following
definition introduces some additional limitations but, on the other hand, it enables us
to comprehend also some bodies which are not

”
long and slender“ (if they satisfy these

limitations).

In the mechanics of materials, bar is the simplest theoretical model of a real body which
satisfies certain assumptions concerning geometry, deformations, loads, supports and
stress states. All these assumptions will be called bar assumptions.
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10.1. Bar assumptions

a) assumptions concerning geometry

– The bar is defined by its centreline γ and by the cross
section ψ in every point of this centreline.

– The centreline γ is a continuous and smooth line with a finite length.

– The cross section is a onefold or multifold continuous plane
region, defined by its outlines; it can be described mathematically
by its cross section characteristics.

characteristics
The section A-A in the figure is an example of an disconti-
nuous cross section (violation of bar assumptions, the body
cannot be solved as a bar).
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– The centreline length is substantially higher then the lar-
gest dimension of the cross section.

A cartesian right-handed coordinate system is mostly used for the description of a bar;
its x axis is tangential to the bar centreline and the other two axes (y, z) lie in the cross
section.

b) assumptions concerning supports and loads

– The supports restrict only displacements and rotations of points belonging to the
centreline.

– The loads are concentrated on the centreline, i.e. the bar can
be loaded by isolated or line forces or couples which act on the
centreline. If this is not satisfied, it is necessary to introduce
a statically equivalent (SE) replacement of the real load by a
load acting on the centreline; the limitations based on Saint-
Venant’s principle must be taken into account, if using a SE
replacement.

loading

SE

previous CONTENT next



p10 – 4

c) assumptions concerning deformation

– The centreline remains continuous and
smooth during all the process of defor-
mation.

– During all the process of deformation, the cross sections remain planar and perpen-
dicular to the deformed centreline, they can only mutually
– draw away (tension),
draw near (compres-
sion),

tension

– rotate around an axis lying in the cross section and de-
form (flection),

flection

– rotate around an axis perpendicular to the cross section
and remain undeformed (torsion),

torsion

– shift perpendicular to the centreline (shear).
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d) assumptions concerning stress states

The state of stress in a point of the bar is determined by normal and 
shear stresses in the cross section containing this point; all the other stress 
components equal zero. This type of stress state is called bar-type 
stress state.

bar-type s.s.

Tσ =

 σx τxy 0
τyx 0 0
0 0 0

 =
 σ τ 0
τ 0 0
0 0 0

 or Tσ =

 σx 0 τxz
0 0 0
τzx 0 0

 =
 σ 0 τ
0 0 0
τ 0 0


Two types of elements will be used in solving stresses and deformations of bars:
– finite element Ω0, isolated from the bar by a
single section ω1,

– onefold infinitesimal element Ω1, isolated
from the bar by two adjacent cross sections
ω1 and ω2 (this is the basic element in bar
solutions).

It is often advantageous to understand this basic element as a set of threefold infinitesimal 
elements, which are defined by an element dψ of the cross section ψ and by an element dγ of 
the centreline γ.
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10.2. Geometrical characteristics of the cross section

Geometrical characteristics of the cross section are quantities that characterise the cross
section and that are used in formulas for calculation of stresses and deformations under
the specific simple types of loading.

10.2.1. Cross section area

S =
∫
ψ

dS =
∫∫
ψ

dydz
[
m2
]

10.2.2. Linear (static) moments

Uy =
∫
ψ

zdS, Uz =
∫
ψ

ydS
[
m3
]

You have met the linear moments already in statics where they were used in calculation
of the position of gravity centre: gravity 

centre
~rT =

∫
Ω
~rdFG∫
Ω
dFG

for ρ = konst., t = konst. ~rT =

∫
Ψ
~rdS

S
⇒ yT =

∫
Ψ
ydS

S
=
Uz
S
, zT =

∫
Ψ
zdS

S
=
Uy
S

Example 101Note:
Linear moment to an axis containing the gravity centre (centroidal axis) equals zero. 
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10.2.3. Second moments (moments of inertia)

term definition formula dimension example of use

axial Jy =
∫
ψ
z2dS, [m4] stress and deformation in flection (calculated

Jz =
∫
ψ
y2dS, in the principal coordinate system)

Jyz =
∫
ψ
yzdS, [m4] determination of the directions of principal

axes
polar JP =

∫
ψ
r2dS, [m4] stress and deformation in torsion (for bars

with axisymmetric cross sections)

flection

torsion
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10.2.4. Basic properties of second moments (moments of inertia)

1. They are additive: second moments of the whole cross section ψ to the given axes equal 
the sum of second moments of the cross section parts ψi to the same axes.

2. Signs: Values of axial and polar second moments are positive; values of products
of inertia can be any real number (both conclusions result from the properties of
integrals).

3. Axial moments of two symmetric sections to the axis of symmetry are equal. The
same holds for any axis perpendicular to the axis of symmetry of both sections.
Products of inertia of both sections to these axes are also of the same magnitude
but of opposite signs. Example 102

Demonstration:

Ψ1 = Ψ2, J
(1)
z =

∫
Ψ1

y2dS =
∫
Ψ2

(−y)2dS = J (2)z

J (1)y =
∫
Ψ1

z2dS =
∫
Ψ2

z2dS = J (2)y ,

J (1)yz =
∫
Ψ1

yzdS = −
∫
Ψ2

yzdS = −J (2)yz ⇒ J (1)+(2)yz = J (1)yz +J
(2)
yz = 0.

It results from the above equations: if at least one of the coordinate axes is identical 
with the axis of symmetry of the cross section, the product of inertia of the cross 
section to this coordinate system equals zero.
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4. The polar second moment equals the sum of axial second moments to the 
perpendicular axes intersecting each other in the pole.
Demonstration:

r2 = y2 + z2 ⇒ JP =
∫
ψ

r2dS =
∫
ψ

(y2 + z2)dS =
∫
ψ

y2dS +
∫
ψ

z2dS = Jz + Jy
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10.2.5. Second moments of basic simple cross section shapes

a) Rectangle Jy =
∫
ψ
z2dS =

h/2∫
−h/2

z2bdz = bh3
12 , Jz =

∫
ψ
y2dS =

b/2∫
−b/2

y2hdy = hb3
12 ,

Jyz =
∫
ψ
yzdS = 0

b) Triangle y(z)
b = h− z

h → y(z) = b− b
hz, dS = (b− b

hz)dz

Jy =
∫
ψ
z2dS =

h∫
0
z2(b− b

hz)dz =
bh3
12 , Jz =

hb3
12 , Jyz =

h2b2
24

Note: These moments must be transformed by translation and rotation for 
practical use, because they are not related to the principal centroidal 
coordinate system (see below).

c) Circle Jy = Jz, Jy + Jz = JP ⇒ Jy = 12JP , dS = 2πρ · dρ, JP =
∫
ψ
ρ2dS,

JP =
R∫
0
ρ22πρ · dρ = πR4

2 , Jy = Jz =
JP
2 = πR4

4 =
πD4
64 , Jyz = 0
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10.2.6. Second moments under transformation of coordinate system

The transformation relations can be advantageously used in calculation of second mo-
ments of the cross section. You can calculate the second moments related to the axes for 
which the calculation is easy (or the values are known), and then you transform the values 
to the principal centroidal coordinate axes. In this way you obtain the so called principal 
centroidal second moments that are used e.g. in calculations of stresses and deflections of 
bars under flection (beams). flection

a) Transformation by translation

Steiner’s theorems
Using Steiner’s theorems, we can calculate second moments to 
the translated axes y and z from the known values of second 
moments to the centroidal axes (intersecting each other in the 
gravity centre) yT a zT (or opposite):

Example 103

Problem 104

Jy = JyT + b2S, Jz = JzT + a2S, Jyz = JyT zT + abS.

As the terms a2S and b2S are always positive, the second moment to any translated 
axis is higher than the second moment to the parallel centroidal axis (running through 
the gravity centre).
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b) b) Transformation by rotation

For the transformation by rotation, the following relations can be
derived:

Jy′ = Jy cos2 α− Jyz sin 2α+ Jz sin2 α
Jz′ = Jz cos2 α+ Jyz sin 2α+ Jy sin2 α

Jy′z′ =
Jy − Jz
2 sin 2α+ Jyz cos 2α

JP ′ = Jy′ + Jz′ = JP

Problem 110
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10.2.7. Principal moments of inertia

Among the rotated coordinate systems y’ and z’, there is at least one coordinate sys-
tem yh, zh in which the product of inertia equals zero (Jyhzh = 0). This coordinate sys-tem is 
the principal coordinate system and its axes are called principal axes. The second 
moments related to this coordinate system are called principal second moments 
(principal moments of inertia) Jyh , Jzh . It is evident from the Mohr’s representation (see 
chapter 10.2.8.) that one of these second moments is maximal (denoted as J1) and the other 
one minimal (J2) among all the second moments to any rotated coordinate system. The 
position of the principal coordinate system is determined by the angle between the original 
and rotated (principal) axes; this angle can be calculated from the condition of zero product 
of inertia:

Jyhzh
=
Jy − Jz
2

sin 2αh + Jyz cos 2αh = 0 ⇒ αh =
1
2
arctg

(
−2Jyz
Jy − Jz

)
.

The principal coordinate system having its origin in the centroid of the cross section is  Example 105

Problem 107

Problem 108

Problem 109

called principal centroidal coordinate system. As the axis of symmetry of the section 
always runs through its gravity centre and the product of inertia to the centroidal axis 
equals zero, the axis of symmetry is always identical with the principal centroidal axis, as 
well as the perpendicular axis intersecting it in the centroid.
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10.2.8. Mohr’s representation of second moments

Second moments related to the coordinate systems having various rotation angles around a 
point of the cross section (commonly around the centroid) can be graphically represented in 
the form of the Mohr’s circle.

Example 106

In the Mohr’s diagram, the axial second moments 
correspond to the abscissa and products of inertia to the 
ordinate of the graph. One point of the circle is determi-
ned by the axial second moment Jy and by the 
product of inertia Jyz, while the point on the opposite end 
of the circle diameter is determined by the axial 
second moment Jz and by the product of inertia Jyz of 
the same magnitude but with an opposite sign. (This 
convention is given by the derivation of the Mohr’s 
circle.)
The angle 2αh between the radius vector of the point 
corresponding to the moment Jy and the abscissa (ho-
rizontal axis) equals the double angle αh  between the 
y-axis and the corresponding principal centroidal axis of the 
cross section.
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10.3. Inner resultants in bars (VVÚ)

We solve an elasticity problem for a bar-type body loaded by a system of loads Π (volume, 
area and line distributed forces and/or isolated forces and couples). Displacements of the 
individual points of the body represent a visible demonstration of results of the loading 
process; these displacements are described mathematically by a vector field, i.e. by a set of 
displacements vectors ~uA. Stress and strain states in each of the points of the body are an 
inner demonstration of the loading process; these states are described by the mutually 
dependent tensors Tσ and Tε in every point of the body. Tσ

TεThe solution to stress components is based on the equations of static equilibrium of an
element of the body.

You divide the bar into two finite elements Ω 01 and Ω 02 by a cross 
section ω. The static equilibrium of the element Ω01 is ensured by the 
inner forces which have generally a character of area forces distributed 
continuously across the cross section ω; we introduced the quantity 
called general stress fω to express these forces. (An analogical 
static equilibrium holds for element Ω 02; if the equilibrium 
conditions are satisfied for the element Ω01, they will be automati-
cally satisfied also for the element Ω02.)

As the number of the independent equilibrium equations cannot be higher than six, they 
are not sufficient for evaluation of stresses, which can show another magnitude and di-
rection in each point of the cross section; the problem of calculation of stresses in the 
cross section is multifold statically indeterminate. To make the solution possible, we 
replace the general stresses in the cross section by a statically equivalent (SE) force and moment

previous CONTENT next



p10 – 16

resultant in its centroid R.

The resultants F~V and M~ 
V are vectors, each of 

them having three components. This set of six 
components is called inner resultants (VVÚ –
this abbreviation is based on the czech term) 
and they can be evaluated from the equations 
of static equilibrium (SR) of the element Ω01 or 
Ω 02, isolated as a free body; these equations ex-
press the equilibrium of outer forces Π 1 (or Π2) 
and inner resultants ΠV = {FV , MV}    , which act 
on the element Ω01 (or Ω02).

equivalence

Mastering of evaluation of inner resultants is necessary to manage the elasticity 
theory of bars. The inner resultants are assistant quantities describing the loading of the 
bar and enabling us to find dangerous points (i.e. points with the lowest safety factor 
value) on the centreline of the bar in advance.
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The procedure of definition of components of inner resultants is
as follows:

We decompose the force and moment inner resultants into the
directions of axes of the local coordinate system:

~FV = ~FV x + ~FV y + ~FV z = N~i+ Ty~j + Tz~k

~MV = ~MV x + ~MV y + ~MV z =Mk
~i+Moy

~j +Moz
~k

Their coordinates are components of inner resultants in the point R of the centreline
(VVÚ).

VVÚ = {N, Ty, Tz,Mk,Moy,Moz}

The components of the inner resultants in a point of the centreline can be evaluated from
the equations of static equilibrium of an element isolated as a free body. equations SR
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The origin of the local coordinate system is in the centroid of the cross section  axes 
in which the inner resultants are evaluated. The xL-axis is identical with the centreline 
of the bar in the case of a straight bar (if the bar is curved then it is tangential to the 
curvilinear centreline), the axes yL and zL lie in the cross section and all the three axes 
create a Cartesian coordinate system.

Specific terms and notations are used for components of inner resultants:

/ orientation of outer normal - tensionN - normal force \ orientation of inner normal - compression
Ty, Tz - shear forces - shear loading of the bar
Mk - torsion moment (torque) - torsion loading of the bar
Moy,Moz - bending moments - flection loading of the bar

tension

torsion

flection
Inner resultants (VVÚ) are components of the force and moment resultants of inner 
forces in the centroid of the cross section, which together with the system of loads 
create an equilibrium system of forces acting on the element of the bar.

centroid
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The distribution of inner resultants F~V , M~ 
V represents functions describing the distri-

bution of their components along the centreline; these functions are determined by the
shape of the centreline and by the loads. The centreline is deformed under load, therefore loading 
the resultants F~V and M~ 

V can change in any point of the centreline during the loading 
process. Therefore the deformed shape of the centreline should be taken into account
in evaluation of inner resultants using the second order theory of elasticity. If the changes
of F~V and M~ 

V in the consequence of centreline deformations are not substantial, these 
changes can be neglected and the resultants F~V and M~ 

V can be evaluated with respect to
the undeformed centreline, i.e. to the original shape (elasticity theory of the first order).
In this case we must evaluate the deformation and to judge whether this deformation
cannot change the inner resultants substantially. If they are changed substantially, the 
calculation is wrong and it should be repeated using the deformed shape of the centre-
line. This course, however, will deal with the elasticity theory of the first o rder (except
for buckling of bars); then the deformation of the centreline does not influence the stress
state substantially and the element can be isolated as a free body in its undeformed state.

From the viewpoint of non-zero components of inner resultants, bar loading can be divided
as follows:

– onefold loading of a bar – there is only one non-zero component of inner resultants
~N, ~T , ~Mo, ~Mk in all points of the bar centreline. This loading is called tension (N > 0),
compression (N < 0), flection (Mo 6= 0), torsion (Mk 6= 0) or shear (T 6= 0);

– combined loading of a bar – if more than one component of inner resultants
~N, ~T , ~Mo, ~Mk are non-zero at least in one point of the centreline.
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Notice that there are also two ways of expressing the inner resultants:

a) Inner resultants in a point of the centreline: a certain value of each of the
components, it is necessary to calculate local characteristics
(e.g. stresses).

b) Inner resultants of the bar: a function describing the distribution of each of the
components along the length of the centreline, it is needed for
calculation of global characteristics (e.g. displacements) and
to find the dangerous points, as well.

Sign convention:

We introduce the following convention concerning signs of inner resultants (sometimes also
other conventions are used in literature, the convention used should be always presented):

The quantities N, Ty, Tz,Mk,Moy,Moz are
supposed to be positive if their orientation
is identical with the positive (negative)
orientation of the local coordinate system
axes for an element containing the origi-
nal L (final P) point of the centreline.

Note: The different orientations of positive components of inner resultants on the left 
(containing the L point) and on the right (containing the P point) elements of the bar are 
introduced with the aim to satisfy the principle of action and reaction between the both 
elements. If we satisfy this convention, we obtain components of inner resultants with the 
same signs no matter which of both elements of the bar we have chosen for the solution.
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10.4. Evaluation of inner resultants (VVÚ)

The objectives are as follows:

– to evaluate the components of inner resultants for a general point of the bar cent-
reline,

– to represent the distribution of components of inner resultants along the centreline
and to find the points where extreme values are reached,

– to calculate the extreme values of the individual components,
– to define parts of the centreline with the same type of loading using a set of
non-zero components of the inner resultants.

10.4.1. Approaches to evaluation of distribution of inner resultants (VVÚ)

In evaluation of distribution of inner resultants along the centreline, the following two
approaches are used:

a) Integral approach – it is based on the formulation and solution of the equations of
static equilibrium for a finite element of the bar.

b) Differential approach - it is based on the formulation and solution of the equations 
of static equilibrium for an (onefold) infinitesimal element of the bar.

previous CONTENT next



p10 – 22

Let’s have a free straight bar the centreline of which is determined (in the global coordinate
system) by the original L (left-handed) and final P (right-handed) points. The bar is loaded
by a given general system of loads Π:

– isolated forces ~Fi [N] in the points Ai of the cent-
reline, i = 1÷ n,

– isolated couples ~Mj [Nm] in the points Bj of the
centreline, j = 1÷m,

– line forces given by the load intensity ~q(l) [Nm−1]
per unit length of the centreline γ or its part γq;
the points of the loaded part will be denoted by C.

Example 201

Example 202Dimensions of the bar cross sections need not to be defined for evaluation of components
of inner resultants!
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a) Integral approach
is based on the definition of the components of inner resultants, which are evaluated
from the equations of static equilibrium of a finite element in the following way:

1. We introduce a section ω containing the point R;
this section divides the bar into two elements: ΩL
(containing the point L) and ΩP (containing the
point P).

2. We evaluate the components of the inner resultants from the equations of static
equilibrium of one of these elements, no matter which of them we choose. Usually
we choose the element being easier for the solution.

3. The chosen element (denoted asΩR) has the cen-
treline length lR and it is loaded by a system of 
loads ΠR. We introduce the components of inner 
resultants (FV, MV) in the gravity centre of the 
cross section with the positive orientation ac-
cording to the above sign convention. The bar is in 
static equilibrium, therefore the element ΩR must 
satisfy the conditions of static equilibrium as well.

– force condition:
∑
lR

~Fi +
lR∫
0
~qi(l)dl + ~FV = ~0

– moment condition:

equilibrium

convention

∑
lR

( ~RAi × ~Fi) +
∑
lR

( ~Mj) +
lR∫
0
( ~RC × ~q)dl + ~MV = ~0
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It is evident from the above vector equations (there are sums and integrals in them) that
inner resultants in the point R of the bar loaded by a system of external loads equal the
sum of inner resultants created by the individual external loads.

4. If we define the position of the point R of the bar centreline
in the global coordinate system (xR for a Cartesian, ϕR
for a polar coordinate systems), we are able to evaluate
any of the components of inner resultants as a function of
the position of the point R along the bar centreline, i.e. to
evaluate the distribution of the inner resultants.

local c.s.

Consequences of the sign convention:
– the positive normal force ~N is oriented
outwards the section,

– the positive shear force ~T is oriented
clockwise around the points L or P,

– the positive bending moment ~Mo de-
forms the bar in a convex shape (the red
curve in the figure - the center of curva-
ture is up).

The rules for signs of T and Mo can be unambiguously used only in a plane (2D)
problem, at a straight horizontal bar.
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5. Where the section should be introduced to obtain the distribution of the inner resul-
tants?
For evaluation of inner resultants, the bar must be described by its centreline being a
continuous and smooth curve and a system of loads acting on the centreline need to bar

assumptionsbe defined. The distribution of all the components of inner resultants along the cent-
reline can be expressed in the form of functions with a finite number of discontinuity
points along the centreline. These points represent borders of intervals and in each
of these intervals one section must be introduced. Components of inner resultants
are namely expressed in the form of functions, which can be discontinuous or have a
discontinuous derivative on the borders of intervals.

6. We determine the distributions of the functions describing dependencies of the indi-
vidual components of inner resultants on the section position (you have learned it in
mathematics) and we find the position of extremes (in addition to the borders of in-
tervals they can be in any points where the first derivative of the function equals zero)
in an analytical or graphical way. In these so called dangerous points we calculate dangerous

pointfunction values of the non-zero components of inner resultants.
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b) Differential approach

It is based on differential dependencies between the bar loads and the components of inner
resultants. These dependencies (called Schwedler’s theorems) can be derived for a bar
with a general centreline shape under a general load. Here, however, we derive only the
differential relations valid for a straight bar loaded by a general non-constant distributed
in-plane load ~q(x). We cut a onefold elementary element Ω1 from the bar using two
adjacent cross sections; the element has an infinitesimal length dx.

We decompose the continuous load
~q(x) in the normal and tangen-
tial directions of the cross section
(~qT (x), ~qN(x)):

qN(x) = q(x) cosα, qT (x) = q(x) sinα

Then we introduce the components of inner resultants; the differences between their mag-
nitudes in both sections equal to the elementary increments dN, dT, dMo. We formulate
the applicable conditions of static equilibrium; in this formulation, the distributed load ~q
of the element can be considered constant (in magnitude as well as in direction) because
of the elementary length of the element:∑

Fx = 0 : N(x) + dN(x)−N(x) + qN(x)dx = 0∑
Fz = 0 : T (x) + dT (x)− T (x) + qT (x)dx = 0∑

MR2 = 0 : Mo(x) + dMo(x)−Mo(x)− T (x)dx+ qT (x)dx
dx
2
= 0

previous CONTENT next



p10 – 27

If we neglect the differential of the 2nd order against the other terms (differentials of the
1st order) in the last equation, we obtain relations denoted as Schwedler’s theorems:

dN(x)
dx

= −qN(x),
dT (x)
dx

= −qT (x),
dMo(x)
dx

= T (x).

Let’s analyse these relations from the viewpoint of the meaning of derivatives:

– The magnitude of the distributed load determines the direction of the tangent line
to the curve representing the functional dependency of T (x) in the point in question
of the centreline.

– The magnitude of the shear force T (x) in a certain point of the centreline equals
to the direction of the tangent line to the curve describing the distribution of the
bending moment Mo(x).

If we namely know the distributed load, the character of distribution of components of
inner resultants is unambiguously determined by this fact. To calculate the particular
values, the following helping rules can be used.
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10.4.2. Helping rules for evaluation of distribution of inner resultants

1. A step in the distribution (i.e. the direction of the tangential
line → infinity) of N(x) or T (x) can be only there where an
isolated force of the corresponding direction acts (~q →∞).
T > 0, if the transverse force acts upwards on the left-hand
side of the cross section.

2. In a point where there is a step in the T (x) distribution (diffe-
rent values on the left and right sides of the section), a turning
point must occur in the bending moment distribution Mo(x)
(different directions on the left and right sides).(

Schwedler’s theorem:
dMo(x)
dx

= T (x)

)
.

3. A step in the Mo(x) distribution occurs if and only if there is
an external couple acting in the point in question.
Mo > 0, if the center of curvature of the deformed centreline
is on its upper side.

4. If the bar is loaded only by isolated forces and couples (there 
are no distributed loads), the distributions of N(x) and T (x) 
are constant and the representation of Mo(x) is given by 
straight lines (no curves), which can be different for each of 
the intervals (again a consequence of Schwedler’s theorem).
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5. Where the representation of T (x) is crossing the zero-line,
there is an extreme in Mo(x) function.(

dMo(x)
dx

= T (x) = 0 → extreme

)

6. In the bar cross section where the shear force is positive (ne-
gative), the function for Mo(x) is increasing (decreasing)

(a consequence of Schwedler’s theorem: dMo(x)
dx = T (x)).

7. According to the introduced convention it holds Mo > 0 for a
convex deformed bar centreline. The convex and concave parts
of the deformed bar centreline are joined together in the in-
flection point where, consequently, the bending moment must
equal zero.

8. In the end of the bar, all the components of inner resultants
must reach zero values, if there is no corresponding component
of isolated external load acting in this final point (this would
create a step in the distribution according to the par. 1 or 3).
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9. For the evaluation of the distribution of components of inner resultants, advantage
can be taken of the symmetry and antisymmetry of the bar.

If the bar is symmetric from the viewpoint of geometry and, from the viewpoint of ex-
ternal loads (incl. reactions in supports), it is

symmetric, then there is a
– zero shear force,
– extreme bending moment,
– zero torsion moment,

in the symmetry plane.

antisymmetric, then there is a
– zero normal force,
– extreme shear force,
– zero bending moment.

in the antisymmetry plane.
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10.4.3. Opened supported bars

Equations of compatibility
A support is from the kinematic viewpoint described by a set of kinematic pa- support
rameters of the support (displacements, rotations); in a 3D space, it is the set
D3 = {u, v, w, ϕx, ϕy, ϕz}, in plane D2 = {u,w, ϕ}. If any of the kinematic parame-
ters from the set Di is restricted by the support, then the corresponding force
parameter of support (component of the reaction force or couple) from the set
S = {Fx, Fy, Fz,Mx,Moy,Moz} is non-zero. Let’s remember basic types of in-plane sup-
ports:

All these supports are rigid – restricted kinematic parameters are independent of the
load and equal zero.
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The linear elastic supports are characterised by linear relations between the correspon- Problem 407
ding components of force and kinematic parameters of the supports (e.g. u = c . Fx). 
They are more realistic and should be used, if the deformations of the base are not neg-
ligible against the deformations of the bar to be solved. In practice, it is often easier to
determinate the stiffness (flexibility) of supports in an experimental way.

The equation determining the magnitude of a deformation (kinematic) parameter restric-
ted by the support is denoted as equation of compatibility or support deformation
condition. These equations are used in solutions to statically indeterminate bars.

Examples of compatibility equations for rigid and flexible supports:
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Bar supported in n points of the centreline

Let’s have a bar under conditions of simple loading, being supported (joined with the
base) in n points of its centreline. To solve the support reactions, we isolate the bar as a
free body; it means that we remove the supports and replace them by the corresponding
components of reaction forces or couples. When you dealt with statical analyses in sta- statical

analysestics, µ was introduced as a symbol denoting the number of unknown independent force
parameters (components of unknown forces and couples) and ν as a symbol denoting the
number of applicable equations of static equilibrium (it depends on the type of the force
system). The decision, if the problem is statically determinate (soluble in statics), was
based on the relation between these two numerical values. In opposite to dynamics, in
stress analysis the only unknown parameters are reaction forces and couples, therefore we
can use the term statically determinate (indeterminate) bearing of the bar.

The static analysis can result in the following conclusions:

a) ν = µ

– the bearing is statically determinate,
– the unknown independent parameters of reaction resultants can be
calculated from the applicable equations of static equilibrium.

The bearing of the bar is stable from the viewpoint of the whole body
movement but with the possibility of free deformation (no deformation
parameter is restricted).

deformation
characteristics
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b) µ < ν

The bearing of the bar does not fully restrict its whole body movement.
These problems are solved in dynamics and as late as dynamics has been
solved, stress analysis can eventually be carried out.

Dynamics is not needed for the solution in the case that the movement
of the body is otherwise possible but it will not happen under the
given load. The problem is statically determinate (µ = ν) although
the bearing does not ensure the immobility of the body.

c) µ > ν

1. the bearing is statically indeterminate,
the degree of static indeterminacy     s = µ − ν,

2. the number of the independent unknown parameters of reaction
resultants is higher than the number of applicable conditions of
static equilibrium,

3. it is necessary to formulate s equations of compatibility (support
deformation conditions) in addition to ν applicable conditions of
static equilibrium, to solve the independent unknown parameters
of reaction resultants.

The bearing of the bar as a whole is immovable and, moreover, restricted in deformation.
We create the released (primary) structure to solve the problem.
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Opened bars with static determinate bearing – the procedure of solution

We isolate the bar as a free body, that means we replace all the supports with reaction
resultants; these resultants can be calculated from the equations of static equilibrium and
the bar can then be solved like a free bar.

In some cases (a cantilever beam with one free end), the free body diagram is not needed
to evaluate the inner resultants.
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Opened bars with static indeterminate bearing – the procedure of solution

1. We isolate the bar as a free body, that means we replace all the supports by reaction
resultants, and we formulate the applicable equations of static equilibrium.

For example:∑
Fx = 0 :

∑
Fz = 0 :

∑
MA = 0 :

2. We create a released (primary) structure, i.e. we create a corresponding statically
determinate structure (that means a structure with a fixed position in space but

without any restricted deformation parameter) and 
formulate the compatibility equations (support de-
formation conditions); these conditions must be sa-
tisfied by the released supports (the reactions in 
these supports are called statical redundances).

The form of the equation of compatibility is unambiguously determined by the
chosen released structure.
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The released (primary) structure is a statically determinate structure created from
the structure to be solved by replacing some supports by reaction resultants (statical
redundances); together with creation of this released structure, equations of compatibi-
lity should be formulated to ensure the deformation identical with that of the original
statically indeterminate structure. The formulation of these equations is the objective of
this procedure.

Equation of compatibility (support deformation condition) is an equation expres-
sing the restriction of deformation in the location of the released support. It is the very

”
missing“ equation needed for solving the unknown parameters of reaction resultants.
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The equations of compatibility can be

1. homogeneous (zero on the right-hand side of the equation) – at rigid supports, Example 414

2. non-homogeneous – at flexible supports, bars with production inaccuracies, tempe-
rature changes, Example 418

Example 417

Example 419

3. circumstantial supports – at circumstantially acting supports. Example 437
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The negative sign results from using the Castigliano’s theorem where it means the dis- Castigliano’s
theoremplacement oriented against the direction of acting of the force ~FB.

10.4.4. Closed bars - frames

Evaluation of inner resultants is always a statically indeterminate problem at closed bars. 
If we cut a closed bar with a single section, the bar will not be divided into parts (ele-
ments) but it only becomes opened. There are therefore no applicable conditions of static 
equilibrium to evaluate the inner resultants. Moreover, the problem can show an outer 
statical indeterminacy as well, in dependence on the character of the bearing (sup-
ports joining the body with the base). For the solution it is necessary to transform the 
closed bar into an opened one by suitably introduced sections and to formulate equations 
of compatibility. However, we will not deal with the solutions to closed bars in more detail 
in this course.
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10.4.5. Algorithm of evaluation of inner resultants

1. Classification of the bar
– An opened straight statically determinate bar – isolation as a free body and
calculation of reactions in supports (if they are needed).

– An opened straight statically indeterminate bar – only a qualitative solution is
possible (for a quantitative solution it is necessary to create a released structure
and to formulate the equations of compatibility to complete the set of equations
of static equilibrium).

– An opened curved bar – the solution is similar to the straight bar; however,
the force components of inner resultants are not constant even if there is no
distributed load.

– A closed bar – is always statically indeterminate from the viewpoint of eva-
luation of inner resultants (inner statical indeterminacy), it can be moreover 
outer statically determinate or indeterminate. Evaluation of the distribution of 
inner resultants is always a relatively complex problem requiring to complete the 
equations of static equilibrium by the needed number of compatibility equations.

2. Isolation of the bar as a free body – formulation of the conditions of static equi-
librium and calculation of reactions in supports (if the bar to be solved is not a
cantilever beam and the problem is statically determinate).

3. Division of the bar into intervals; this must be realized in all points where:
– isolated outer loads (forces or couples, incl. reactions in supports) act;
– there is a change in the character of a distributed load;
– where the direction of the centreline (turning point) or its curvature changes. Example 203

4. Decision on the further procedure (it need not be the same for all the intervals)
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– integral approach (formulation of the equations of static equilibrium for an ele- integral
approachment of the bar) should be used in those cases, when the problem is relatively

complex but statically determinate.
– differential approach (application of Schwedler’s theorems) can be used if the task differential

approachis relatively easy; however, it must be used always at statically indeterminate bars
(a qualitative solution).
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A) differential approach B) integral approach - we carry out
the following steps in each of the in-
tervals of the bar:

5. We evaluate the distribution of the
force components of inner resultants
or of the torsion moment from the gi-
ven distribution of continuous load,
using the 1st Schwedler’s theorem
and other rules (10.4.2 Helping ru-
les for evaluation of distribution of
inner resultants in straight bars).

5. We isolate an element of the bar
as a free body using a section going
through a general point of the inter-
val in question.

6. We evaluate the distribution of
the bending moment from the
distribution of the shear force using
the 2nd Schwedler’s theorem.

6. We evaluate all the components of
inner resultants from the equations
of static equilibrium of the element
as functions of the position of the
section.

7. We estimate the dangerous sections
from the distribution of the compo-
nents of inner resultants (locations
of local extremes) and we calculate
the magnitudes of components of in-
ner resultants in these points of the
centreline (if the problem is not sta-
tically indeterminate).

7. We evaluate the functional depen-
dencies of components of inner re-
sultants from the viewpoint of local
extremes and define the position of
these extremes.

8.

calculate the magnitudes of compo-
nents of the inner resultants in these
sections.

Schwedler’s
theorem
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Example 238
Note: at non-prismatic bars (with the cross section varying along the bar centreline),
more dangerous sections can exist because of the local reduction of the bar cross section.
This will not be taken into account now but when solving stresses and deformations for
the particular types of loadings.

10.5. Quadratic moments - examples and problems

Examples

Problem 101 Problem 102 Problem 103 Problem 105 Problem 106

Problems

Problem 104 Problem 107 Problem 108 Problem 109 Problem 110
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Examples

Problem 201 Problem 202 Problem 203 Problem 217 Problem 238

Problems

Problem 204 Problem 205 Problem 206 Problem 207 Problem 208

Problem 209 Problem 210 Problem 211 Problem 212 Problem 213

Problem 214 Problem 215 Problem 216 Problem 218 Problem 219

Problem 220 Problem 221 Problem 222 Problem 223 Problem 224

Problem 225 Problem 226 Problem 227 Problem 228 Problem 229

Problem 230 Problem 231 Problem 232 Problem 233 Problem 234

Problem 235 Problem 236 Problem 237
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