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Abstract

The complex potentials constitute the Lehknitskii-Eshelby-Stroh formalism and
its extension form is used to grasp the particular properties and behaviour of the
piezoelectric bi-material notch and interface crack. The material inhomogeneity
and piezoelectricity supplement the stress singularity with further electric one
and make the stress and electric field at the concentrator tip more complicated.
The application of the Lehknitskii-Eshelby-Stroh formalism to the prevailing
boundary conditions at the concentrator tip leads to the solution of the stress
and electric displacement exponent eigenvalue problem, whose results are anal-
ysed. The evaluated eigenvectors substituted to the complex potentials form
the regular and auxiliary solutions which are the basis of the singular and dual
part of the stress field as well as the electrical field at the concentrator tip.
The orthogonality between the regular and auxiliary solutions is applied via
the Ψ-integral to the numerical FEM solution to evaluate the generalized stress
intensity factors.

Keywords: Extended Lehknitskii-Eshelby-Stroh formalism, piezoelectricity,
bi-material notch, interface crack, Ψ-integral, generalized stress intensity factor

1. Introduction

Piezoelectric material is extensively used as sensors or actuators in intelli-
gence advanced structure design, as well as in many branches of science. It is
well known that piezoelectric materials produce an electric field when deformed
and undergo deformation when subjected to an electric field. This is so-called5

intrinsic electro-mechanical coupling phenomenon. Commonly used piezoelec-
tric materials are ceramics manufactured by conventional ceramic processing.
In order to insure the reliability and structural integrity of electro-mechanical
devices using these materials, it is necessary to understand their mechanical
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behaviour. There have been many researches dealing with behaviour of piezo-10

electric ceramics.
Solutions presented in [1], [2], [3], [4], [5], [6] show that equations for piezo-

electric anisotropic problem have same structure as those for corresponding
anisotropic elastic materials. Closed form solution of a central crack based on
expanded Stroh formalism was derived in [5], while solution for elliptic inclusion15

and hole was done in [7], [6], [8]. First attempt to express material matrices
explicitly was done in [9]. The most significant work was done by Hwu in [10],
[11], [12], [13] and also in his monograph [14], where he summed up the previous
research and extended the Stroh formalism, his Key matrix and the unified defi-
nition [15] to the piezoelectric media. Hirai et al. [16] and Abe et al. [17] applied20

the theory to certain bi-material notch configuration including determination of
stress intensity factors by Ψ-integral method.

Similar progress had been done for expanding the Lekhnitskii formalism in
[18], [19]. General solution for piezoelectric anisotropic material was derived
in [20], [21], [22], [23], [24], [25]. Xu and Rajapakse [26], Chue and Chen [27]25

or Chen [28] investigated composite piezoelectric wedges and junctions, i.e. bi-
materials composed from both piezoelectric and anisotropic materials. Stress
intensity factors of an interface crack in isotropic metal/piezoelectric ceramics
were computed in [29], [30] or in [31] for an interface between anisotropic/pie-
zoelectric materials. Banks-Sills et al. [32] calculated stress intensity factors by30

M-integral method.
The anisotropy of the piezoelectric materials require the corresponding math-

ematical tools to handle with their behaviour. The piezoelectric continuum is
governed by the expanded equations of linear electromechanical statics. Ac-
cording to this state, the extended Stroh formalism has been developed by Hwu35

[10, 13, 11].
Suo [33] developed the Lehknitskii-Eshelby-Stroh formalism (LES formal-

ism) for evaluating the stress singularity of an anisotropic bi-material notches.
However, its limit case - an interface crack - is primarily treated as the Hilbert
problem, as can be seen in [6], [34], [35], [36], [37], [38], [39]. The present work40

applies the extended LES formalism for piezoelectric continuum based on the
studies [40, 14, 41] and applies it to the problem of piezoelectric bi-material
notch and interface crack. In addition, both singular concentrator types are
involved into one procedure that do not distinguish whether the value of the
stress singularity exponent is complex or real, respectively.45

In the literature there is a gap in investigation of the notches whose value
of the stress singularity exponent becomes complex. This state can occur when
e.g. a de-laminated interface has face angles very close to an interface crack. In
the following paragraphs it is to be shown that the LES formalism presented
in previously stated papers can be applied through the problems of the notch50

geometry showing oscillatory index to the problems of the interface cracks as its
limit case. Even that the developed particular stress and displacement equations
have a slightly different form as usually appeared in [33], the resulting stress
and displacement development are equal. First, the theory for anisotropic bi-
material has to be investigated in order to get its limit of application, then its55
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expansion to the LES formalism for piezoelectric material is provided.

2. Constitutive laws for piezoelectric materials

There are natural crystals such as quartz that exhibit piezoelectricity. Much
more stronger piezoelectric coupling exhibit man-made piezoelectric materials,
e.g. barium titanate or lead zirconate ceramics. These materials are implicitly60

in isotropic and non-piezoelectric state. Piezoelectric properties can be induced
in these ceramics through a so-called poling process [42], during which their
above mentioned mechanical properties change to generally anisotropic. How-
ever, most poled materials become transversally isotropic.

Material characteristics of piezoelectric materials are predominantly pro-65

vided by elastic stiffnesses CEij , piezoelectric constants eij and dielectric permi-
tivities ωεij . The stiffness, piezoelectric and permittivity matrices CE , e and ωε
characterise the most general form of an anisotropic material with piezoelectric
properties. The symmetry planes will coincide with the global coordinate planes
in the Cartesian coordinate system x1, x2, x3.70

As it is stated above, the initially isotropic ceramic becomes transversally
isotropic during the poling process with the plane of isotropy parallel to the pol-
ing axis. The transversally isotropic state of the material is the most important
one in the study of poled piezoelectric materials, but it is a special case of the
more general monoclinic material whose elasticity and piezoelectricity matrices
have the following structure:

CE =


CE11 CE12 CE13 0 0 CE16

CE12 CE22 CE23 0 0 CE26

CE13 CE23 CE33 0 0 CE36

0 0 0 CE44 CE45 0
0 0 0 CE45 CE55 0
CE16 CE26 CE36 0 0 CE66

 ,

e =

e11 e12 e13 0 0 e16

e21 e22 e23 0 0 e26

0 0 0 e34 e35 0

 , ωε =

ωε11 ωε12 0
ωε12 ωε22 0
0 0 ωε33

 .
(1)

It is worth noticing that the stiffness and permittivity matrices are symmetric,
but the piezoelectric matrix is not. The directional properties of the matrices
depend on the poling axis. The structure of the piezoelectric matrix depends
on the poling directions, which can attain two limit configurations: coincidence
with x1-axis or with x2-axis. Between these states their structure corresponds
to the above mentioned monoclinic one. It is illustrated in the following scheme:
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q x1

e11 e12 e12 0 0 0
0 0 0 0 0 e26

0 0 0 0 e26 0


⇓

in between

e11 e12 e13 0 0 e16

e21 e22 e23 0 0 e26

0 0 0 e34 e35 0


⇓

q x2

 0 0 0 0 0 e16

e21 e22 e21 0 0 0
0 0 0 e16 0 0



(2)

In the further paragraphs we consider a monoclinic or transversally isotropic
materials only, because allow one to decouple a solved problem to an in-plane
and anti-plane. When the material speciment is loaded in the x1x2 plane, we can
focus only on the in-plane problem, where the singularity is significant according
to loading state.75

Let us consider rotation of the material coordinate system about x3 axis by
an angle of 90◦ and −90◦, i.e. we coincide the poling direction with x2 axis.
Then the resulting stiffness matrix of the considered piezoelectric monoclinic
material does not change, on the other hand the elements of the piezoelectric
matrix change the sign. The structure of the permittivity matrices remains un-80

changed. From this follows that the poling has unique orientation and contrary
to the adopted laminate theory there are no symmetries in rotations of the lon-
gitudinal directions. More about matrix structure of individual crystal classes
can be found in [43, p. 123].

For an anisotropic and linearly electro-elastic solid, the constitutive laws
between elastic field tensors ( stresses σij and deformations εij) and electric
field vectors (electric displacements Dj and electric field Ej) are represented by
four equally important equation systems. Using the contracted notation, the
constitutive laws can be then written in a matrix form as [10]{

σ
D

}
=

[
CE e

ᵀ

e −ωε

]{
ε
−E

}
,

{
ε
D

}
=

[
SE −d

ᵀ

d −ωσ

]{
σ
−E

}
,{

σ
−E

}
=

[
CD −h

ᵀ

h −βε

]{
ε
D

}
,

{
ε
−E

}
=

[
SD g

ᵀ

g −βσ

]{
σ
D

}
,

(3)
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where

σ =



σ1

σ2

σ3

σ4

σ5

σ6


=



σ11

σ22

σ33

σ23

σ13

σ12


, ε =



ε1

ε2

ε3

ε4

ε5

ε6


=



ε11

ε22

ε33

2ε23

2ε13

2ε12


,

E =

E1

E2

E3

 , D =

D1

D2

D3

 ,

(4)

The superscript ᵀ denotes matrix transposition. Expressions for matrices SE ,
SD, CD, d, g, h, ωσ, βσ and βε can be evaluated from the relations[

CE e
ᵀ

e −ωε

] [
SD g

ᵀ

g −βσ

]
= I,

[
CD −h

ᵀ

h −βε

] [
SE −d

ᵀ

d −ωσ

]
= I, (5)

where the matrix I is the unit matrix of a shape 9 × 9. In order to investigate
material configurations in an arbitrary poling axis orientation in the plane x3 =
0, transformation relations have to be defined. Let us designate the principal
material coordinate system x∗i , in which we assemble the stiffness, piezoelectric
and permittivity matrices and perform their inverse by (5) to obtain compliance
matrix S∗D, piezoelectric matrix g∗ and non-permittivities1 β∗σ. Then we can
transform the compliance matrix of the piezoelectric material as follows

SD =
(
K−1

)ᵀ
S∗DK−1, g = Ωg∗K−1, βσ = Ωβ∗σΩ−1, (6)

where the transformation matrices K and Ω are defined by

K =


cos2 α sin2 α 0 0 0 2 cosα sinα
sin2 α cos2 α 0 0 0 −2 cosα sinα

0 0 1 0 0 0
0 0 0 cosα − sinα 0
0 0 0 sinα cosα 0

− cosα sinα cosα sinα 0 0 0 cos2 α− sin2 α

 , (7)

Ω =

 cosα sinα 0
− sinα cosα 0

0 0 1

 . (8)

The angle α defines a rotation about x3 axis in counter-clockwise direction85

and physically means the poling direction of the material. With respect to the
material symmetry, the monoclinic materials with the symmetry axis parallel to

1Dielectric permittivity has not an inverse quantity. In some papers it is stated that the
inverse is electric susceptibility χe, but these parameters are not inverse, but it is χe = ωε−1.
Owing to this fact, we adopted the Hwu’s non-permittivity [10].
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x3 = 0 is to be considered. It is the most general material configuration when
the extended LES formalism can be employed. The stress and displacement
relations in the x3 direction are the functions of the x1 and x2 coordinates90

only in this materials. The in-plane and anti-plane fields can be decoupled and
hence the solved problem could be rather simplified. Under the assumption that
external loads are parallel to a plane defined by x3 = 0, we can focus on the in-
plane field only. Note that anti-plane stresses or strains are not zero (with taking
individual plane deformation state into the consideration), but their effects are95

induced by the in-plane loads and one can claim that their influence is less
significant from the in-plane loading point of view. More detailed studies of the
anti-plane fields were published in [44], [45], [27] [46], [47], [48] and [49].

Except the reduction of the independent variables to x1 and x2, an important
simplification in the decoupling of the plane fields is the rank reduction of the
matrices (1) of the constitutive laws, which can be written as{

σ
D

}
=

[
Ĉ
′
E ê′

ᵀ

ê′ −ω̂′ε

]{
ε
−E

}
,

{
ε
−E

}
=

[
Ŝ
′
D ĝ′

ᵀ

ĝ′ −β̂′σ

]{
σ
D

}
, (9)

where

σ =

σ1

σ2

σ6

 ε =

ε1

ε2

ε6

 E =

{
E1

E2

}
, D =

{
D1

D2

}
(10)

and

Ĉ
′
E =

Ĉ ′E11 Ĉ ′E12 Ĉ ′E16

Ĉ ′E12 Ĉ ′E22 Ĉ ′E26

Ĉ ′E16 Ĉ ′E26 Ĉ ′E66

 , ê′ =

[
ê′11 ê′12 ê′16

ê′21 ê′22 ê′26

]
, ω′ε =

[
ω̂′ε11 ω̂′ε12

ω̂′ε21 ω̂′ε22

]
. (11)

Ŝ
′
D =

Ŝ′D11 Ŝ′D12 Ŝ′D16

Ŝ′D12 Ŝ′D22 Ŝ′D26

Ŝ′D16 Ŝ′D26 Ŝ′D66

 , ĝ′ =

[
ĝ′11 ĝ′12 ĝ′16

ĝ′21 ĝ′22 ĝ′26

]
, β̂

′
σ =

[
β̂′σ11 β̂′σ12

β̂′σ12 β̂′σ22

]
(12)

The constitutive laws (9) are the in-plane part of the generalized plain strain
and short circuit form of the first and last constitutive law in (3) also known
as e-type and g-type, respectively. The reduced elements of the matrices in (9)
are evaluated from the matrices in (3) under the assumption that ε3 = 0 and
E3 = 0. This leads to the expressions

Ĉ ′Eij = CEij , ê′ij = eij , ω̂′ijε = ωεij , (13)

Ŝ′Dij = ŜDij +
ĝ3iĝ3j

β̂σ33

= Ŝ′Dji , ĝ′ij = ĝij −
β̂σ3iĝ3j

β̂σ33

, β̂′σij = β̂σij −
β̂σ3iβ̂

σ
3j

β̂σ33

= β̂′σji ,

(14)
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in which

ŜDij = SDij −
SD3iS

D
3j

SD33

= ŜDji , ĝij = gij−
gi3S

D
3j

SD33

, β̂σij = βσij +
gi3gj3
SD33

= β̂σji (15)

for i, j 6= 3. There are more plane generalisations of the piezoelectricity, see
[10], which are not discussed here.100

3. Weak formulation of piezoelectric problem under generalized plane
considerations

The virtual work and the energy-based formulation is established from the
governing equations of the electrostatic behaviour of the piezoelectric continua.
In the absence of the body forces and free charges, the equilibrium equations
are

∂σij
∂xj

= 0,
∂Di

∂xi
= 0, (16)

where repeated indices imply the summation. The strain tensor ε and the
electric field vector E are linked to displacements u and the electric potential φ
by the relations

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, Ei = − ∂φ

∂xi
. (17)

The character of the boundary conditions under which the piezoelectric body
Ω is subjected on its boundary ∂Ω are mechanical and electric. The Dirichlet
boundary conditions are

u = u and , φ = φ (18)

and the Neumann ones

ti = σijnj and Dini = −q, (19)

where

q =
1

4π

∂Ei
∂xi

. (20)

is the surface charge and n is the unit outward normal to the surface ∂Ω. The
repeated indices means again the summation as well as in the following weak
formulation. For arbitrary virtual displacement δu and electrical potential δφ
the weak form of the problem given by the equations (16) can be written as, see
e.g. [50],

−
∫

Ω

σijδεijdΩ +

∫
Ω

DiδEidΩ +

∫
∂Ω

tiδuid∂Ω−
∫
∂Ω

qδφd∂Ω = 0. (21)

Substituting the constitutive law (9)1 into (21) leads to the electric potential
variational principle as the starting point of the so-called mixed finite element
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formulation using the variables u and φ. The results received from the finite105

element analysis is the necessary input into the generalized stress intensity fac-
tor evaluation of the bi-material stress concentrator described in the following
paragraphs. More about the mixed finite element method can be found in e.g.
[51], [52]. The script for the finite element computing platform FEniCS 2018.1
is given in Appendix A.110

4. Stress singularity of piezoelectric bi-material notch and interface
crack

Similarly to the pure anisotropic elasticity, present research of piezoelectric
bi-material singular concentrators is reduced to such cases when principal mate-
rial directions of transversally isotropic piezoelectric materials are in coincidence115

with global Cartesian axes. This brings about simplifications of governing equa-
tions.

A poled piezoelectric ceramic has different material characteristics in the
poling direction than in the perpendicular plane, in which the material be-
haviour is isotropic. Similarly as by pure anisotropic elasticity, the character-120

istic matrices of the material are non-degenerate when the poling direction is
perpendicular with the x3 axis and semi-degenerate or degenerate otherwise.
The non-degenerate materials only are discussed in the following text, because
the semi-degenerate and degenerate materials require special treatment, see [14,
p. 385].125

We focus on the technical types of non-degenerate materials with hexagonal
crystals. Typical representatives are lead zirconate titanate - PZT-4, PZT-5H,
PZT-6B, PZT-7, PZT-7A, barium titanate BaTiO3, or zinc oxide ZnO. These
functional ceramics possess the actuating strain (maximal to 0.2%), the high
stiffness and the high response. In that cases the in-plane and anti-plane fields130

can be decoupled when proper orientations are considered.
The extended LES formalism for piezoelectric media is an power analytical

tool, which can solve the problems of the bi-material notches composed of the
monoclinic materials. The stress singularity at the notch composed of the two
monoclinic piezoelectric materials and solved as the in-plane problem is charac-
terized by two complex exponents δ1 − 1, δ2 − 1 and one real exponent δ3 − 1.
The resulting displacements and stresses are obtained as the superposition of
these particular singular contributions weighted by the generally complex am-
plitudes. The amplitudes are introduced in the similar manner as well as for a
crack and generalized to the case of the sharp notch as the generalized stress
intensity factors (GSIFs). In the first we introduce the vectors

u =

u1

u2

φ

 , T =

T1

T2

TD

 , (22)

where φ is the above defined electric potential, T1, T2 and TD are the components
of the resulting tractions and the electric charge q along the semi-infinity line
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situated at the origin of the coordinate system x1x2. Then the vectors u and T
at the tip of a piezoelectric bi-material wedge has the form [41]

u(r, θ) =H1r
δ1η1(θ) +H2r

δ2η2(θ) +H3r
δ3η3(θ),

T(r, θ) =H1r
δ1λ1(θ) +H2r

δ2λ2(θ) +H3r
δ3λ3(θ),

(23)

where Hi are generalized stress intensity factors, r and θ are polar coordinates,
see Fig. 1, and

ηi(θ) =AZδi(θ)vi + AZ
δi

(θ)wi,

λi(θ) =LZδi(θ)vi + LZ
δi

(θ)wi.
(24)

The matrices Zδi(θ) represent the exponentials of the points in the so-called
z-plane, see [40], corresponding to the points on the unit circle in the (x1, x2)-
plane, which can be written as

Zδi(θ) = diag
[
Rδi1 (θ) eiδiΨ1(θ), Rδi2 (θ) eiδiΨ2(θ), Rδi3 (θ) eiδiΨ3(θ)

]
,

Z
δi

(θ) = diag
[
Rδi1 (θ) e−iδiΨ1(θ), Rδi2 (θ) e−iδiΨ2(θ), Rδi3 (θ) e−iδiΨ3(θ)

]
.

(25)

where
R2
k(θ) = (cos θ + µ′k sin θ)

2
+ (µ′′k sin θ)

2
, (k = 1, 2, 3) (26)

Ψk(θ) =

{
arctan

(
µ′′
k sin θ

cos θ+µ′
k sin θ

)
for θ > −π

−π for θ = −π
, (k = 1, 2, 3) (27)

The symbols µ′k, µ′′k are real and imaginary part of the material eigenvalue µk,
which is the root of the following characteristic equation

l2(µ)
[
l4(µ)ρ2(µ)−m2

3(µ)
]

= 0, (28)

where

l2(µ) = Ŝ′D55 µ
2 − 2Ŝ′D45 µ+ Ŝ′D44 ,

l4(µ) = Ŝ′D11 µ
4 − 2Ŝ′D16 µ

3 + (2Ŝ′D12 + Ŝ′D66 )µ2 − 2Ŝ′D26 µ+ Ŝ′D22 ,

m3(µ) = ĝ′11µ
3 − (ĝ′21 + ĝ′16)µ2 + (ĝ′12 + ĝ′26)µ− ĝ′22,

ρ2(µ) = −β̂′σ11µ
2 + 2β̂′σ12µ− β̂′σ22.

(29)

The expression in square brackets in (28) gives three material eigenvalues µ1,
µ2, µ3 corresponding to the in-plane solution. There is also eigenvalue µ4 as the
solution of the anti-plane characteristic equation l2(µ) = 0 in (28), which is not
taken into account. Remaining matrices in (24) read

A =

a11 a12 a14

a21 a22 a24

a41 a42 a44

 , L =

−µ1 −µ2 −µ4ξ4
1 1 ξ4
−ξ1 −ξ2 −1

 , (30)
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Figure 1: Geometry of a bi-material notch characterized by two regions I and II. Notch faces
are defined by angles ω1 and ω2. Material interface is always considered at θ = 0. Angles α1

and α2 denote poling direction of the materials I and II, respectively.

where the elements of the matrices A and L are defined as ([19], [22], [25], [27],
[32])

a1k = µ2
kŜ
′D
11 + Ŝ′D12 − µkŜ′D16 + ξk (µkĝ

′
11 − ĝ′21) , (k = 1, 2)

a2k =
[
µ2
kŜ
′D
12 + Ŝ′D22 − µkŜ′D26 + ξk (µkĝ

′
12 − ĝ′22)

]
/µk, (k = 1, 2)

a4k =
[
µ2
kĝ
′
21 + ĝ′22 − µkĝ′26 + ξk

(
−µkβ̂′σ12 + β̂′σ22

)]
/µk, (k = 1, 2)

a14 =
(
µ2

4Ŝ
′D
11 + Ŝ′D12 − µ4Ŝ

′D
16

)
ξ4 + µ4ĝ

′
11 − ĝ′21,

a24 =
[(
µ2

4Ŝ
′D
12 + Ŝ′D22 − µ4Ŝ

′D
26

)
ξ4 + µ4ĝ

′
12 − ĝ′22

]
/µ4,

a44 =
[(
µ2

4ĝ
′
21 + ĝ′22 − µ4ĝ

′
26

)
ξ4 − µ4β̂

′σ
12 + β̂′σ22

]
/µ4,

(31)

ξk = − l2(µk)m3(µk)

ρ2(µk)l2(µk)
, (k = 1, 2)

ξk = − l2(µk)m3(µk)

l2(µk)l4(µk)
. (k = 4)

(32)

5. Formulation of exponent eigenvalue problem

In the previous sections, fundamental matrices were defined as functions of
the stress and electric displacement singularity order δ, which is an eigenvalue of
a characteristic equation for a notch geometry and notch tip prescribed bound-
ary conditions. Considering a bi-material notch as depicted in Fig. 1, where
each wedge occupies the region 0 < θ < ω1 or ω2 < θ < 0, traction and charge
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free notch faces impose the following boundary conditions:

TI(ω1) = 0,

TII(ω2) = 0.
(33)

The bi-material interface is assumed to be coincident with x1 axis, i.e. with a
nomenclature of notch faces, its wedge is ω0 = 0. The displacement and traction
continuity is prescribed along the interface ω0 = 0 as

uI(0) = uII(0),

TI(0) = TII(0).
(34)

Let us consider a bi-material notch composed of two monoclinic materials, with
longitudinal directions arbitrary oriented in the plane x3 = 0. By substituting
vector functions λ(θ) and η(θ) from (24) into (33) and (34), we get for the
variable δ eight homogeneous algebraic equations, which we can write in the
matrix form as 

XI
1 X

I

1 0 0

0 0 XII
2 X

II

2

BI
0 −B

I

0 −BII
0 B

II

0

I I −I −I




LIvI

L
I
wI

LIIvII

L
II

wII

 = 0. (35)

Xj = LZδj (ωj) (L)−1, Xj = LZ
δ

j (ωj) (L)−1, (j = 1, 2) (36a)

B0 = iAL−1, B0 = −iAL
−1
, (36b)

Yj = X
−1

j Xj , (j = 1, 2) (36c)

where 0 denotes 3× 3 zero matrix on the left-hand side and 12× 1 zero vector
on the right-hand side of the equation. The algebraic system of the twelve
equations (35) can always be reduced to the algebraic system of three equations
only. Let us introduce a vector

LI
av

I
a =

1

2

(
LIvI + L

I
wI
)
, (37)

where index a stands for an average value of both eigenvectors LIvI and LIwI

with no physical meaning. Then the homogeneous algebraic system (35) can be
eliminate to

K
(
I−YI

1

)−1

2LI
av

I
a = 0, (38)

where

K = BI
0 + B

I

0Y
I
1 −

(
BII

0 + B
II

0 YII
2

)(
I−YII

2

)−1 (
I−YI

1

)
. (39)
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The matrix (39) can be found also in [54] and [55], but only for the case of
anisotropy and when δ is real. To get a non-trivial solution of (38), the following
relation for any δ must be held:

det [K(δ)] = 0, (40)

which leads to a nonlinear characteristic equation, which can have unlimited
number of solutions δi. In the literature the solution δi is sometimes called
as an eigenvalue. This is mathematically not exact, but it fulfils the physical
meaning. We deal only with the solutions δi for which the eigenvalue of the
matrix K(δi) equals zero. Since from the physical point of view the strain
energy cannot be unbounded, the values satisfying the condition 0 < <{δi} < 1
have to be considered. The corresponding eigenvectors vI

i, vII
i and wI

i, wII
i are

evaluated from the expressions

vI
i =
(
LI
)−1 (

I−YI
1

)−1

2LI
av

I
a,

vII
i =

(
LII
)−1 (

I−YII
2

)−1 (
I−YI

1

)
LIvI

i,

wI
i =−

(
L

I
)−1

YI
1L

IvI
i,

wII
i =−

(
L

II
)−1

YII
2 LIIvII

i .

(41)

The exponent δi as a solution of (40) and its eigenvectors vI
i, vII

i and wI
i, wII

i

determine the so-called regular solutions. It can be proved, see [56], that expo-

nent δ̂i = −δi also satisfies (40). This auxiliary solution is only a mathematical135

tool allowing the evaluation of the GSIFs via the later introduced Ψ-integral. In
fact it represents a stress field at the notch tip whose singularity is stronger then
the regular one and hence with unbounded energy. By reinserting δ̂i into (38)
and by employing (41), corresponding auxiliary eigenvector v̂I

i can be evaluated
as well as the remaining auxiliary eigenvectors v̂II

i , ŵI
i and ŵII

i .140

It is worth to note that the disproportion of the elastic, piezoelectric and
permittivity constants causes that the matrices appearing in the constitutive
laws (9) are ill-conditioned and hence the usual numerical procedures providing
the evaluation of the eigennumber and eigenvectors of the matrix K(δi) gives
wrong results. For this reason, it is suitable to use an alternative method of the
evaluation of the eigenvectors vI

i, vII
i , wI

i, wII
i and their auxiliary complements

v̂I
i, v̂II

i , ŵI
i, ŵII

i . By substituting δi or δ̂i into (38) we get

K∗(δi)v
∗
i = 0, (i = 1, 2, 3) (42)

where

K∗ = K
(
I−YI

1

)−1

, and v∗i = 2LI
av

I
a. (43)

Equation (42) can be expressed in a matrix form asKi∗
11 Ki∗

12 Ki∗
13

Ki∗
21 Ki∗

22 Ki∗
23

Ki∗
31 Ki∗

32 Ki∗
33

v
i∗
1

vi∗2
vi∗3

 =

0
0
0

 . (44)
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Because of the singularity of the matrix K∗(δi) the one vector component, i.e.
vi∗3 = 1, is chosen to eliminate one row of K∗(δi). System (44) is then reordered
as [

Ki∗
11 Ki∗

12

Ki∗
21 Ki∗

22

]{
vi∗1
vi∗2

}
=

{
−Ki∗

13

−Ki∗
23

}
. (45)

The remaining vector components can be now solved as an ordinary system of
two linear equations. In connection with the LES formalism we can define

2LI
av

I
a =

v
i∗
1

vi∗2
1

 . (46)

Finally it is convenient to evaluate the eigenvector vI
i from the normalized vector

LIvI
i according to the standard numerical algorithms

LIvI
i =

(
I−YI

1

)−1

2LI
av

I
a∣∣∣∣∣∣∣∣(I−YI

1

)−1

2LI
av

I
a

∣∣∣∣∣∣∣∣ . (47)

The remaining eigenvectors vII
i , wI

i and wII
i are evaluated using (41)2–(41)4.

6. Determination of generalized stress intensity factors by using two-
state Ψ-integral

GSIFs determine the stress amplitude of the displacements, the electric po-
tential, stresses and electrical displacements characterized by normalized shape
functions (24). In the present work, GSIFs are determined by using the Ψ-
integral method, which was firstly introduced in works of Sinclair et al. [57]
or Vu-Quoc and Tran [58] and deeply investigated by Hwu [14]. It is based
on the Betti and Rayleigh reciprocal theorem [59]. Contrary to J-integral, the
maintenance on path-interdependency for Ψ-integral is also regarded for multi-
material stress concentrators. Its application is conditioned by the knowledge
of the so-called auxiliary solution of the particular problem, which is possible to
find just by using the theory of complex potentials. Neglecting the body forces
(also assumed by Lekhnitskii formalism), the Ψ-integral for a bi-material notch
characterised by angles ω1 and ω2 becomes

Ψ(u, ûi) =

∫ ω1

ω2

(
u
ᵀ
t̂i − û

ᵀ
i t
)
r dθ. (48)

The vectors ûi and t̂i are the auxiliary solutions to the displacements, tractions,
electric potential and the charge and correspond to the exponent δ̂i = −δi. The
auxiliary solutions are defined as

ûi(r, θ) =r−δi η̂i(θ),

t̂i(r, θ) =− 1

r

∂T̂i(r, θ)

∂θ
= −r−δi−1λ̂

′
i(θ),

(i = 1, 2, 3) (49)

13



where (.)′ denotes the differentiation with respect to θ,

η̂i(θ) =AZ−δi(θ)v̂i + AZ
−δi

(θ)ŵi,

λ̂
′
i(θ) =L

(
Z−δi(θ)

)′
v̂i + L

(
Z
−δi

(θ)
)′

ŵi

(i = 1, 2, 3) (50)

and (
Zδ(θ)

)′
= diag

[
δRδ−1

1 (θ) ei(δ−1)Ψ1(θ) [− sin θ + µ1 cos θ] ,

δRδ−1
2 (θ) ei(δ−1)Ψ2(θ) [− sin θ + µ2 cos θ] ,

δRδ−1
3 (θ) ei(δ−1)Ψ3(θ) [− sin θ + µ3 cos θ]

]
,

(51)

(
Z
δ
(θ)
)′

= diag
[
δRδ−1

1 (θ) e−i(δ−1)Ψ1(θ) [− sin θ + µ1 cos θ] ,

δRδ−1
2 (θ) e−i(δ−1)Ψ2(θ) [− sin θ + µ2 cos θ]

δRδ−1
3 (θ) e−i(δ−1)Ψ3(θ) [− sin θ + µ3 cos θ]

]
.

(52)

Vectors u and t represent displacements, electrical potential, tractions and
charge of the solution, which contains the shape functions (24) of the regu-
lar expression in the analytical as well as numerical form. In the first case, the
vector u is given by (23)1 and the vector t is given by the derivative of (23)2

with respect to θ,

t(r, θ) = −1

r

∂T(r, θ)

∂θ
= −H1r

δ1−1λ′1(θ)−H2r
δ2−1λ′2(θ)−H3r

δ3−1λ′3(θ). (53)

where taking into account δ = δi in (51) and (52) one can write

λ′i(θ) = L
(
Zδi(θ)

)′
vi + L

(
Z
δi

(θ)
)′

wi, (i = 1, 2, 3) (54)

Since the regular and corresponding auxiliary solutions are orthogonal with
respect to the integral (48), i.e.

Ψ(rδjηj(θ), r
−δi η̂i(θ)) =

{
const 6= 0 for i = j,

0 for i 6= j,
(55)

the Ψ-integral gives an important result in the GSIFs evaluation

Ψ(u, r−δi η̂i(θ)) =Ψ(rδiηi(θ), r
−δi η̂i(θ)) =

=Hi

∫ ω1

ω2

(
η
ᵀ
i (θ)λ̂

′
i(θ)− η̂

ᵀ
i (θ)λ′i(θ)

)
dθ.

(56)

One can see that the integral (56) is independent on the radial coordinate r
and generally path-independent. It is worth to note that integration path is145
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counter-clockwise oriented contrary to the clockwise oriented boundary in LES
formalism giving the negative sign in (53) and (49). Reorienting the boundary
leads to changing the sings on t and t̂.

The GSIFs can be covered by defining a second integral, where the vectors
u and t in (48) of the actual state can be obtained from any other method while
the virtual state are the above defined auxiliary solutions û and t̂. Due to the Ψ-
integral path-independence, the integration contour is chosen far away from the
notch tip. In the present work, the finite element method (FEM) implemented
in ANSYS software [60] or FEniCS 2018.1 [61] are used to describe the real
state. Let us introduce the integral

Ψ
(
uFEM , r−δic η̂i(θ)

)
=

=

∫ ω1

ω2

((
uFEM

)ᵀ
r−δ−1
c λ̂

′
(θ) + r−δc η̂

ᵀ
(θ)tFEM

)
rc dθ,

(57)

where rc is the radius of the circular path remote from the notch singularity.
Note that the signs follow from the orientation of the outward normal and the
integration contour. The elements of the vector uFEM = [uFEM

1 , uFEM
2 , φFEM]

ᵀ

are the solution of weak form (21) and hence direct output from the finite
element analysis, but elements of the vector tFEM along the integrating contour
have to be computed from the stresses using the Cauchy’s formula ti = σijnj ,
in a matrix form written as

tFEM = σFEMn, (58)

where σFEM is the two-dimensional stress tensor and n is the outer normal to
the domain enclosed by the circular integrating path of the radius rc defined as

σFEM =

σFEM
11 σFEM

12

σFEM
21 σFEM

22

DFEM
1 DFEM

2

 , n =

{
cos(θ)
sin(θ)

}
. (59)

It is again worth to note that there is a mismatch between the orientation
of the normal vector n introduced in (59) and the orientation of the normal
along any curve introduced in LES formalism, see [10]. Applying the analogy
with standard dot product of the vectors, the Ψ-integrals (56) and (57) project
analytical and numerical solution of the same problem into the basis function of
some dual function space generated by the auxiliary solutions (50). Hence both
Ψ-integrals (56) and (57) are equal and the following relations are intended

Hi =
Ψ
(
uFEM, r−δic η̂i(θ)

)
Ψ
(
rδic ηi(θ), r

−δi
c η̂i(θ)

) . (i = 1, 2, 3) (60)

7. Results and discussion

Let us consider a piezoelectric bi-material notch with a local geometry and
the poling directions in Fig. 1. Herein, the angles α1, α2 denote the poling
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material constants PZT-4 PZT-
5H

PZT-
6B

PZT-
7A

BaTiO3

CE11 ×1010 [Pa] 11.3 11.7 16.3 13.1 14.6
CE12 ×1010 [Pa] 7.43 5.30 6.00 7.42 6.60
CE23 ×1010 [Pa] 7.78 5.50 6.00 7.62 6.60
CE22 ×1010 [Pa] 13.9 12.6 16.8 14.8 15.0
CE44 ×1010 [Pa] 2.56 3.53 2.71 2.54 4.40

e11 [Cm−2] 13.8 23.3 7.10 9.50 17.5
e12 [Cm−2] -6.98 -6.50 -0.90 -2.10 -4.35
e26 [Cm−2] 13.4 17.0 4.60 9.70 11.4

ωε11 ×10−9 [C(Vm)−1] 5.47 13.0 3.40 7.35 11.2
ωε22 ×10−9 [C(Vm)−1] 6.00 15.1 3.60 8.11 9.87

Table 1: The material properties of the transversally isotropic piezoelectric ceramics poled in
x1-axis [36], [17], [16].

directions. Note that the poling has a directional character, which corresponds
to the polarization. It means, contrary to the fibre orientation by the anisotropic
elasticity, that if we rotate the poling direction about for example 90◦ and −90◦,
we do not obtain the same material behaviour. The only difference is in the
structure of piezoelectric matrix e or g in (1) or (3), respectively, whose elements
have opposite signs for the above mentioned rotations. We apply the extended
LES formalism on common transversally isotropic piezoelectric materials, whose
the elastic, piezoelectric and electric material characteristics are stated in Tab.
1. In the most papers, the material properties are defined for the poling in x3-
axis. To keep the extended LES formalism consistent with the LES formalism
for the pure anisotropic elasticity, the poling direction is considered parallel
with x1-axis. The elastic, piezoelectric constants and the permittivities can be
reordered by the following procedure:

CE,x1

11 = CE,x3

33 , CE,x1

12 = CE,x3

13 ,

CE,x1

23 = CE,x3

12 , CE,x1

22 = CE,x3

11 ,

CE,x1

44 = CE,x3

44 ,

ex1
11 = ex3

33 , e
x1
12 = ex3

13 , e
x1
26 = ex3

15 ,

ωε,x1

11 = ωε,x3

33 , ωε,x1

22 = ωε,x3

11 .

(61)

In many studies, the poling direction is considered parallel with any of the150

coordinate axes. Then, the material eigenvalues have a form µ1,3 = ∓a + bi,
µ2 = ci. When the arbitrary fibre orientation is considered, real and imaginary
parts of µ1 and µ3 are distinct. This is illustrated in Tab. 2 for PZT-4. Values
for the poling direction α = 90◦ agree with those in [25].

It is worth to note that for the cases α = 0◦ and α = 180◦ we get equal155

eigenvalues, but as it was mentioned in the section 2, the material behaviour is
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poling direction µ1 µ2 µ3

α = 0◦ −0.2183 +
0.86483i

0.8396i 0.2183+0.86483i

α = 50◦ 0.0944 + 1.3004i 0.1266 + 0.7898i 0.1757 + 1.0154i
α = 90◦ −0.2744 +

1.0871i
1.1910i 0.2744 + 1.0871i

α = 180◦ −0.2183 +
0.86483i

0.8396i 0.2183+0.86483i

Table 2: The material eigenvalues for the certain poling directions α of PZT-4.

bi-materials δ1 δ2 oscillatory
index ε

comparison
with Ou and

Wu [36]

PZT-
5H/BaTiO3

0.5+0.01293i 0.5−0.01293i 0.01293 0.0130

PZT-
5H/PZT-6B

0.5+0.02189i 0.5−0.02189i 0.02189 0.0219

PZT-
5H/PZT-7A

0.5+0.00697i 0.5−0.00697i 0.00697 0.0069

PZT-
6B/PZT-7A

0.5+0.00547i 0.5−0.00547i 0.00547 0.0055

Table 3: Oscillatory indices of ε-class bi-materials and their comparison with results in [36].
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Figure 2: The HSV and contour plot of the characteristic function f(δ) = det[K(I−YI
1)−1]

defined in (40) for a PZT-5H/BaTiO3 bi-material notch with geometry ω1 = 120◦, ω2 =
−180◦. The intersections of the curves with different colour give the searched roots.
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Figure 3: The HSV and contour plot of the characteristic function f(δ) = det[K(I−YI
1)−1]

defined in (40) for a PZT-5H/BaTiO3 bi-material notch with geometry ω1 = 180◦, ω2 =
−180◦. The intersections of the curves with different colour give the searched roots.
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Figure 4: The HSV and contour plot of the characteristic function f(δ) = det[K(I−YI
1)−1]

defined in (40) for a PZT-5H/PZT-4 bi-material notch with geometry ω1 = 180◦, ω2 = −180◦.
The intersections of the curves with different colour give the searched roots.
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(a) PZT-5H/BaTiO3. (b) PZT-5H/PZT-4.

Figure 5: The exponent δi dependence on the notch geometry ω1. Poling directions are
α1 = 90◦, α2 = 90◦.

(a) PZT-5H/BaTiO3. (b) PZT-5H/PZT-4.

Figure 6: The dependence of the interface crack exponents δi on the poling direction α1. The
poling direction α2 = 90◦.

(a) PZT-5H/BaTiO3. (b) PZT-5H/PZT-4.

Figure 7: The dependence of the interface crack exponents δi on the poling direction α1. The
poling direction α2 = 0◦.
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(a) PZT-5H/BaTiO3. (b) PZT-5H/PZT-4.

Figure 8: The dependence of the interface crack exponents δi on the poling direction α1. The
poling direction α2 = α1.

(a) PZT-5H/BaTiO3, ω1 = 120◦ (b) PZT-5H/PZT-4, ω1 = 155◦

Figure 9: Dependence study of the singular stress terms δ on the poling direction α1 of two
cases of a bi-material notch. Poling direction α2 = 90◦.
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bi-materials δ1 δ3 oscillatory
index κ

comparison
with Ou and

Wu [36]

PZT-
4/BaTiO3

0.44914 0.55086 0.05086 0.0508

PZT-4/PZT-
5H

0.45585 0.54415 0.04415 0.0442

PZT-4/PZT-
6B

0.48316 0.51684 0.01684 0.0168

PZT-4/PZT-
7A

0.47525 0.52475 0.02475 0.0247

PZT-
6B/BaTiO3

0.49039 0.50961 0.00961 0.0095

PZT-
7A/BaTiO3

0.47936 0.52064 0.02064 0.0206

Table 4: Oscillatory indices of κ-class bi-materials and their comparison with results in [36].

different due to the opposite signs in the piezoelectric matrix ĝ′.
Let us consider the PZT-5H/BaTiO3 of material 1/material 2 combination

and a bi-material notch given by ω1 = 120◦ and ω2 = −180◦. In all of the
following examples, poling direction is parallel with x2-axis (α1 = α2 = 90◦) if160

it is not specified otherwise. The phase portrait of the transcendental function
(40) is depicted in Fig. 2. There are three real roots δ1 = 0.5226, δ2 = 0.5770
and δ3 = 0.7462 of the characteristic function (40) in the interval 0 < <{δ} < 1.
In a case of an interface crack (ω1 = 180◦), there are two complex conjugate
roots δ1 = 0.5 + 0.01293i, δ2 = 0.5 − 0.01293i and the third one δ3 = 0.5, see165

Fig. 3. The characteristic function (40) has two poles at the points δ = 0 and
δ = 1 in both notch configurations.

The different results are obtained when we consider an interface crack be-
tween PZT-5H and PZT-4 materials. One can see that there are three real
roots: δ1 = 0.4558, δ2 = 0.5 and δ3 = 0.5442 in the graphs on Fig. 4 contrary
to complex ones in the previous material combination. The disappearing of the
oscillatory index ε is can be given by comparing the results with Ou and Wu
[36]. Here, the interface crack was investigated as the Hilbert problem, e.g.
[33], and it was found out that there are two types of singularities in the case of
interface crack between two piezoelectric material - the oscillatory singularity
when exponents have an oscillatory index ε, and the non-oscillatory singularity
when exponents have oscillatory index iκ. In the first case, the eigenvalues have
the form

δ1,2 = 0.5± iε, (62)

while in the latter case

δ1,3 = 0.5± i(iκ) = 0.5∓ κ, (63)
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which are real numbers. The bi-materials with an interface crack are then
divided into two classes: ε-class and κ-class. Contrary to the Hilbert problem
formulation showed in [36], the employed procedure solving the eigenvalue prob-170

lem (35) and (36) for κ-class bi-materials does not get the oscillatory indices
iκ and the value 0.5 in the found exponent δ separately, but absorbed in the
resulting roots of the equation (40). When we take a look at the exponents for
the PTZ-5H/PZT-4 bi-material more closely, we see that δ1 and δ3 are sym-
metric with respect to the δ2 = 0.5. Then the parameter κ can be extracted by175

subtracting the value 0.5 from δ1 or δ2, respectively. The observed results of δ1
and δ2 for all material combinations compared with the values given in the lit-
erature are summarized in Tab. 3 and Tab. 4. The Tab. 4 gives the parameter
κ extracted from the found exponent using the equation (63). The remaining
exponent is always gets the value δ3 = 0.5 for all bi-material combinations. One180

can see that the all received values of δ1 and δ2 coincide with the values given
in [36].

A study of the dependence of the exponents δi on the notch angle ω1 shows us
more about the differences between particular bi-material classes. Let the angle
ω2 = −180◦ be fixed and the angle ω1 change in the interval 0 < ω1 < 180◦. The185

dependence of the exponents δi, for PZT-5H/BaTiO3 bi-material on the angle
ω1 is depicted in the Fig. 5a. Similar development can be obtained for all ε-class
bi-materials. Eigenvalues δ1 and δ2 are real valued in the almost whole interval
0 < ω1 < 180◦ except the values for ω1 > 168◦, when they become complex
conjugate. Note that imaginary part of δ2 is not depicted because it has the190

same values as ={δ1} but with opposite sign. Third eigenvalue δ3 corresponds
to the non-singular character of the stress and electric displacement field at the
notch tip because δ3 > 1 up to ω1 = 78◦ and it is always real. Real parts of
complex conjugate eigenvalues δ1 and δ2 as well as the third one δ3 converge to
the value 0.5 for ω1 → 180◦. It has to be pointed out that δ3 is not equal to the195

real parts of neither δ1 nor δ2 for very closed notch configurations.
The same study was done for PZT-5H/PZT4 bi-material, a representative

one of the κ-class. One can see in Fig. 5b the different dependency of the
exponents δi on the ω1 contrary to the previous study. The third eigenvalue δ3
provides the stress and electric displacement field at the notch tip singular when200

δ3 < 1 for ω1 > 75◦. Moreover it is real in the whole interval 0 < ω1 < 180◦.
The exponents δ1 and δ2 are complex conjugate for 139◦ < ω1 < 166◦. For the
interface crack as the limit case of the notch, the exponent δ2 converges to 0.5,
while the exponents δ1 and δ3 become symmetric with respect to the exponent
δ2. The same bi-material was investigated by Hirai et al. [16]. Unfortunately205

their outputs and the results publish here mismatch.
Comparing the graphs in Fig. 5 one can see that by considering a bi-material

notch defined by an arbitrary angle ω1, the bi-material classification introduced
by Ou and Wu [36] for interface cracks is ambiguous for general stress concentra-
tors Hi. Whereas PZT-5H/BaTiO3 bi-material only has the ε-type oscillatory210

index, the material combination PZT-5H/PZT-4 has both oscillatory indices -
ε as well as κ, but for certain angles ω1 including the case of the interface crack.
Actually, a bi-material solved via the eigenvalue problem (35) and (36) has only
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the ε oscillatory index and as it is mentioned above, the parameter κ is absorbed
in the real roots observed in the case of an interface crack.215

This discrepancy can be seen also by performing a study of the dependency
of the exponents δi on an poling angle α1 while the angle α2 = 90◦ remains fixed.
The Figs. 6a and 6b show the exponents δi of the bi-materials composed of two
typical piezoelectric materials. The PZT-5H/BaTiO3 bi-material combination
in Fig. 6a has two complex conjugate exponents δ1 and δ2 in a small interval220

70◦ < α1 < 90◦ while their real parts are equal to 0.5. The third exponent is
constant δ3 = 0.5. The exponents δ1 and δ3 become abruptly real and symmetric
with respect to δ2 for the remaining values of α1. The PZT-5H/PZT-4 bi-
material has the real exponents δi only. In both bi-materials the same poling
orientation α1 = α2 = 90◦ leads to the fact, that the real parts of the exponents225

δi are equal or have the closest value to the value 0.5. It means, that the
stress and electric displacement singularity at the tip of the interface crack is
the strongest one in this case. The same parallelism effect of poling directions
of the both materials in the cracked bi-material show Figs. 7a and 7b, but
for the case of α1 = α2 = 0. A fact that the always parallel poling directions230

maximizing the singularity of the stress and electric displacement field can be
arbitrary is illustrated in Fig. 8, where the values of the exponents δi remain
constant for any value α1 = α2.

Let us perform the same studies for non-symmetric notches. Two charac-
teristic notch configurations has been investigated to get an idea about the235

exponents δi behaviour. Considering the PZT-5H/BaTiO3 bi-material defined
by ω1 = 120◦ and ω2 = 180◦. We see in Fig. 5 that there are three real expo-
nents δi. The Fig. 9a shows that by changing poling direction α1 the exponents
δi remain real. In contrast to that result, PZT-5H/BaTiO3 bi-material has two
complex conjugate exponents δ1, δ2 and the real one δ3 for 80◦ < α1 < 130◦.240

It also has three real exponents δi for the remaining values 0 < α1 < 80◦ and
130◦ < α1 < 180◦. Similar development can be seen in Chen [28] for a right
angle bonded wedge for PZT-5H/PZT-4 bi-material. We can see that the ε and
κ classification of a bi-material is applicable only for an interface crack. From
the above investigation we can claim that a bi-material notch problem solved by245

(35) and (36) can have either three real exponents δi or two complex conjugates
exponents δ1, δ2 with an oscillatory index ε and one real exponent δ3. Closing
a notch by ω1 → 180◦, we get two unique exponent developments - type A (Fig.
5a) or type B (Fig. 5b). Their limit states, an interface crack for ω1 = 180◦,
has either three real exponents (two δ1 and δ3 symmetric with respect to third250

one δ2 = 0.5) or two complex conjugate exponents δ1, δ2 with real parts 0.5
and one real exponent δ3 = 0.5. However, by changing the poling direction α1,
bi-materials can switch from one to another set of exponents δi. Furthermore,
the interface crack is the only one concentrator when the symmetry of two ex-
ponents, e.g. δ1 and δ3, with respect to the third one δ3 occurs. That is the255

reason why the classification introduced in Ou and Wu [36] cannot be used in
the present study for general singular stress concentrators.

The knowledge of the character of the stress and electric displacement sin-
gularity represented by the exponents δi is necessary to the GSIFs evaluation
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Figure 10: Finite element mesh of the piezoelectric bi-material notch model with mechanical
and electrical boundary conditions.

discussed in the following. The FEM analysis is another required component260

of the procedure allows one to get complete description of the singular stress
and electric displacement field at the bi-material notch tip. The FEM results
are computed by softwares ANSYS and FEniCS. Both of them give the same
result. The 8-node quadratic plane element PLANE223 for coupled field analyses
was used with the option of plane strain state (generalized plane strain and265

short circuit: ε3 = 0 and E3 = 0) in the case of the using ANSYS. By set-
ting KEYOPT,e type,1,1001 electrostatic-structural coupled field analysis with
piezoelectric effect is enabled. Variable notch geometry is enabled, face angles
ω1, ω2 could attain values between 0◦ and 180◦ while bi-material interface re-
mains fixed at ω0 = 0◦. Fibre orientation is realized by orienting the element270

coordinate system by angles α1 and α2, respectively. Dimensions of the two-
dimensional model are A = 180 mm and B = 180 mm. In the case of the FEniCS
solver, the 6-node standard triangle Lagrange element of the discrete function
space Vu and Vφ as the subsets of the Hilbert space H1 are chosen. The FEniCS
then solves the weak formulation (21) as the mixed problem (u, φ) ∈ Vu × Vφ,275

for details see the FEniCS script in Appendix A.
The notch geometry and boundary conditions are illustrated in Fig. 10.

Displacements at the right lateral node are fixed in the x1 direction in order
to avoid rigid body motion. The applied stress σappl

22 = 10 kPa and the electric

displacement is Dappl
2 = 0.01 Cm−2. Displacement u2 on the upper boundary is280

coupled in order to minimize the non-uniform loading. According to the elec-
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Figure 11: The dependency of the GSIFs on the radius rc of the intgration path enclosing (a)
the piezoelectric bi-material notch given by ω1 = 120◦, δ1 = 0.5226, δ2 = 0.5770, δ3 = 0.7462
and (b) the piezoelectric interface crack given by δ1 = 0.5 + 0.01293i, δ2 = 0.5 − 0.01293i,
δ3 = 0.5.
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Figure 12: The displacements, stress components, electric displacement components and
electric potential of PZT-5H/PZT-4 bi-material notch on the circular path r = 0.001 mm,
ω1 = 120◦, ω2 = −180◦.
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Figure 13: The displacements, stress components, electric displacement components and elec-
tric potential of PZT-5H/PZT-4 bi-material notch on the circular path r = 2 mm, ω1 = 120◦,
ω2 = −180◦.
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Figure 14: The displacements, stress components, electric displacement components and elec-
tric potential of PZT-5H/BaTiO3 bi-material notch on the circular path r = 0.001 mm,
ω1 = 180◦, ω2 = −180◦.
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Figure 15: The displacements, stress components, electric displacement components and elec-
tric potential of PZT-5H/BaTiO3 bi-material notch on the circular path r = 2 mm, ω1 = 180◦,
ω2 = −180◦.
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Figure 16: The displacements, stress components, electric displacement components and
electric potential of PZT-5H/PZT-4 bi-material notch on the circular path r = 0.001 mm,
ω1 = 155◦, ω2 = −180◦. Poling directions are α1 = 40◦ and α2 = 90◦.
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Figure 17: The displacements, stress components, electric displacement components and elec-
tric potential of PZT-5H/PZT-4 bi-material notch on the circular path r = 2 mm, ω1 = 155◦,
ω2 = −180◦. Poling directions are α1 = 40◦ and α2 = 90◦.
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tromechanical analogy, electric potential φ is also coupled. Coordinate systems
of the deformed FEM solution and the analytical solution (23)1 are not coin-
cident, hence the both notch tip displacements and electric potential have to
be subtracted from all body displacements and potential, respectively. It has285

to be reminded that notch faces have to remain mechanically and electrically
unloaded (zero tractions t and the charge q).

The numerical integration of the Ψ-integrals in (60) is realized by the Rom-
berg’s integration method. The advantage of this method contrary to e.g. the
trapezoidal rule is that it enables the usage of the adaptive integration step and290

achieves the better accuracy. Therefore, an interpolation function of the nodal
results has to be created in order to get approximative value in an arbitrary
point. For the interpolation, the linear interpolation function has to be used.
From the computational point of view, integrals are evaluated for each material
region separately, because if we would perform the integration for the whole295

path from ω2 to ω1, the discontinuity of σ11 would cause a numerical error. The
resulting integral for the whole curve are the sum of the particular integrals.

In the first, the path-dependency of the Ψ-integrals is tested. The values of
the GSIFs calculated via the Ψ-integrals (60) for the radii 0.0005 mm < rc <
4 mm are shown in Fig. 11. The study is investigated for two representative300

cases: bi-material notch PZT-5H/PTZ-4 with the face angles ω1 = 120◦, ω2 =
−180◦, which has real exponents δi and an interface crack for PZT-5H/BaTiO3

with two complex conjugate exponents δ1, δ2 and one real δ3. The complex
intensity factors are decomposed to real and imaginary parts. One can see
that the graphs confirm the above mentioned independency of the Ψ-integral305

on its intgration path. It has to be pointed out that the default settings of
the integration algorithm are inapropriate to get the results in Fig. 11. The
third components of the eigenvectors v and w from (41) are much more lower in
comparison to the other ones (about ten times). That bring about problems with
relative tolerance in the Romberg’s integration procedure, which default value310

is 1.48 × 10−8. But this is higher than the order of the Ψ-integrals appearing
in the denominators of 60 i.e. in the Ψ-integrals combining the auxiliary and
regular solutions (24)1, (50) and (54). Based on that fact and additional studies
it is found out that the relative error has to be set to 1.48 × 10−25 to get
precise results for all bi-material and path radius rc configurations. For the315

next studies, the value rc = 2 mm is choosen as the radius of the integration
path of the Ψ-integrals in (60).

In the following we focus on the two just above investigated bi-material con-
figuration, i.e. PZT-5H/PST-4 and PZT-5H/BaTiO3, respectively. Since from
the exponent eigenvalue problem (35) point of view only two cases can occur -
three real exponents δi in the first case or two complex conjugate exponents δ1,
δ2 with one real δ3 in the second case. Let us introduce the functions

λ̃
x2

i (θ) =LδiZ
δi−1(θ)µvi + LδiZ

δi−1
(θ)µwi,

λ̃
x1

i (θ) =LδiZ
δi−1(θ)vi + LδiZ

δi−1
(θ)wi,

(i = 1, 2, 3) (64)
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where

µ =

µ1 0 0
0 µ2 0
0 0 µ3

 , µ =

µ1 0 0
0 µ2 0
0 0 µ3

 . (65)

Then for the stresses and electric displacements we can write

σ1(r, θ) =−H1r
δ1−1λ̃

x2

1 (θ)−H2r
δ2−1λ̃

x2

2 (θ)−H3r
δ3−1λ̃

x2

3 (θ),

σ2(r, θ) =H1r
δ1−1λ̃

x1

1 (θ) +H2r
δ2−1λ̃

x1

2 (θ) +H3r
δ3−1λ̃

x1

3 (θ),
(66)

where

σ1 =

σ11

σ12

D1

 , σ2 =

σ21

σ22

D2

 . (67)

Let us consider poling directions α1 = 90◦ and α2 = 90◦ of the bi-material and
notch geometry ω1 = 120◦ and ω2 = −180◦. All characteristics, the stresses and
electric displacements σ1 and σ2, respectively, and displacements with electrical320

potential u using the equations (66) and (23) for the PZT-5H/PZT-4 bi-material
notch on the path with radius r = 0.001 mm are depicted in Fig. 12 and shows
very good correspondence with the FEM solution. Also here we can see that the
values closest to <{δ} = 0.5 have the strongest contribution to the resulting final
stress field. The same calculation but for the radius r = 2 mm, are depicted in325

Fig. 13. We can see that the correspondence is still very good, more significant
changes are present in electric displacements.

The stresses, electric displacements, displacements and electric potentials at
the interface crack tip in the bi-material PZT-5H/BaTiO3 on the paths with
radii r = 0.001 mm and r = 2 mm are shown in Fig. 14 and 15, respectively.330

The contribition of the components corresponding to the complex conjugate
exponents δ1 and δ2 to the total mechanical stresses and displacements as well
as the electric displacements and potential are equivalent. The stress, displace-
ment and electric potential fields corresponding to the third exponent δ3 are
proportional to those of the first one δ1 and the second one δ2, but its effect to335

the total fields is more significant for the electric displacements and electric po-
tential only. However, the correspondence between the analytical and the FEM
solution is very good for both radii r = 0.001 mm and r = 2 mm, respectively.

In the current research authors considered the poling only in coincidence
with one of the Cartesian coordinate axis, mostly x2 or x3. This fact follows340

from the manufacturing technology, operational purpose and relations for mate-
rials eigenvalues. But there are some situations that can cause an abrupt change
of poling direction. When a body is subjected to the high compressive load in
the direction of the spontaneous polarization or to the high tensile load per-
pendicular to the direction of the spontaneous polarization, the electric domain345

can switch by 90◦. The polarization can be also switched by applying electric
field with different direction, which can force the crystal to transform to one of
the other five possible configurations. The extended LES formalism described
above can provides solutions with arbitrary poling direction in the plane x1x2.
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The graphs in Figs. 16 and 17 show stresses, mechanical as well as electric350

displacements and electric potential for PZT-5H/PZT-4 bi-material notch de-
fined by angles ω1 = 155◦, ω2 = −180◦, where the poling of the PZT-5H is
α1 = 40◦. We can again observe an excelent agreement between the numerical
FEM solutiond and analytical description via the extented LES formalism.

8. Conclusion355

The extended Lekhnitskii-Eshlelby-Stroh formalism for piezoelectric materi-
als was applied on bi-material notches and interface crack problem. Even that
these two kinds of the stress concentrators are usually studied separately, espe-
cially in the case of the piezoelectric materials, the presented results showed that
the used form of the extended LES formalism covers acceptable both particular360

fields of the fracture mechanics. Additionally, the singularities of very closed
bi-material notches, whose stress terms showing the complex valued exponents
were part of the discussion. Also arbitrary poling orientation of the piezoelectric
materials in the x1x2 plane was included into the considerations. The gener-
alization of the so-called ε and κ classification of the piezoelectric bi-materials365

to the type A and B, respectively, was suggested. It was ascertained that the
exponents of the singularity of the stresses, mechanical and electric displace-
ments and electric potential are independent on the parallel poling orientation
of the bi-material. Although in the case of the interface crack the used exponent
eigenvalue procedure is not able to distinguish between the real and complex370

exponent form as do the Hilbert problem presented in Ou and Wu [36], it was
shown that both methods give equivalent results. Finally the Ψ-integral method
was used to GSIF evaluation for various piezoelectric bi-material and notch con-
figurations. After an introduction of the improved numerical treatment caused
by the ill-conditioning of the matrices in the piezoelectric constitutive law, a375

very good approximation of all components of mechanical and electrical char-
acteristics was shown as well as the Ψ-integral path-independence.

Acknowledgements

?

Appendix A. FEniCS 2018.1 script for interface crack in piezoelec-380

tric bi-material

A FEniCS offers the way to solve numerically the weak formulation (21).
The mesh of the domain Ω has to be imported from any external mesh tool. An
example of the model made in such tool (GMSH software [62]) of the interface
crack, whose dimensions are given in Fig. 10, is shown in the Fig. A.18. The385

physical tags of the subdomains and boundaries must be included in the mesh
import to allow FEniCS to assign them the corresponding material characteris-
tics and boundary conditions. The Neumann and Dirichlet boundary conditions
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Figure A.18: The physical tags of the boundary and subdomains generated by GMSH mesh
software.

(19) and (18) are prescribed according to the model in Fig. 10. More informa-
tion about FEniCS can be found on the FEniCS project website [61] and in390

Logg et al. [51]. The FEniCS script written in Python is follows:

import os

#-----[FEniCS 2018.1]-----

from dolfin import *

#-----[ PZT-5H ]-----395

#-----[stiffness >Pa<]-----

C0_11=11.7e10

C0_12=5.30e10

C0_23=5.50e10

C0_22=12.6e10400

C0_44=3.53e10

C0_66=(C0_22-C0_23)/2

#-----[piezoelectric coefficients >C/m2<]-----

e0_12=-6.50

e0_11=23.30405

e0_26=17.00

#-----[dielectric permittivity >10e-9 C/Vm<]-----

omega0_11=13.0e-9

omega0_22=15.1e-9

#-----[ BaTiO3 ]-----410

#-----[stiffness >Pa<]-----

C1_11=14.6e10

C1_12=6.60e10

C1_23=6.60e10

C1_22=15.0e10415

C1_44=4.40e10

C1_66=(C1_22-C1_23)/2

#-----[piezoelectric coefficients >C/m2<]-----
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e1_12=-4.35

e1_11=17.50420

e1_26=11.40

#-----[dielectric parmittivity >10e-9 C/Vm<]-----

omega1_11=11.2e-9

omega1_22=9.87e-9

#-----[mesh convert to FEniCS xml]-----425

os.system("dolfin-convert bicrack0.msh bicrack0.xml")

#-----[mesh import]-----

mesh=Mesh(’bicrack0.xml’)

#-----[domain and boundary physical tags]-----

domains=MeshFunction("size_t",mesh,’bicrack0_physical_region.xml’)430

boundaries=MeshFunction("size_t",mesh,"bicrack0_facet_region.xml")

#-----[matrices of the constitutive laws]-----

C0=as_matrix([[C0_11,C0_12,0.],[C0_12,C0_22,0.],[0.,0.,C0_44]])

C1=as_matrix([[C1_11,C1_12,0.],[C1_12,C0_22,0.],[0.,0.,C1_44]])

e0=as_matrix([[e0_11,e0_12,0.],[0.,0.,e0_26]])435

e1=as_matrix([[e1_11,e1_12,0.],[0.,0.,e1_26]])

omega0=as_matrix([[omega0_11,0.],[0.,omega0_22]])

omega1=as_matrix([[omega1_11,0.],[0.,omega0_22]])

#-----[constant definition]-----

null=Constant(0.)440

#-----[piezoelectricity characteristic]-----

def eps(u):

Du=grad(u)

return 0.5*(Du + Du.T)

def E(phi):445

Ephi=-grad(phi)

return Ephi

def strain2voigt(e):

return as_vector([e[0,0],e[1,1],2*e[0,1]])

def voigt2stress(s):450

return as_tensor([[s[0],s[2]],[s[2],s[1]]])

def sigma0(u,phi):

su=voigt2stress(dot(C0,strain2voigt(eps(u))))

sphi=voigt2stress(dot(e0.T,E(phi)))

return su-sphi455

def sigma1(u,phi):

su=voigt2stress(dot(C1,strain2voigt(eps(u))))

sphi=voigt2stress(dot(e1.T,E(phi)))

return su-sphi

def D0(u,phi):460

Du=dot(e0,strain2voigt(eps(u)))

Dphi=dot(omega0,E(phi))

return Du+Dphi

def D1(u,phi):
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Du=dot(e1,strain2voigt(eps(u)))465

Dphi=dot(omega1,E(phi))

return Du+Dphi

#-----[measure symbols]-----

ds=Measure("ds",domain=mesh,subdomain_data=boundaries)

dx=Measure("dx",domain=mesh,subdomain_data=domains)470

#-----[fixed point of boundary]-----

def pinpoint5(x,on_boundary):

return near(x[0],0) and near(x[1],-90e-3)

#-----[external loading]-----

class tractions3(UserExpression):475

def eval(self,value,x):

value[0]=0.

value[1]=1.e4 # >Pa<

def value_shape(self):

return (2,)480

#-----[function spaces]-----

V=VectorElement("CG",mesh.ufl_cell(),2)

VV=FiniteElement("CG",mesh.ufl_cell(),2)

#-----[mixed function space]-----

MX=FunctionSpace(mesh,MixedElement([V,VV]))485

#-----[Neumann boundary conditions]-----

tr3=tractions3(element=MX.ufl_element())

#-----[Dirichlet boundary conditions]-----

bcs=[DirichletBC(MX.sub(0).sub(0),null,pinpoint5,’pointwise’),

DirichletBC(MX.sub(0).sub(1),null,boundaries,5),490

DirichletBC(MX.sub(1),null,boundaries,5)]

#-----[trial and test functions]-----

(u,u_phi)=TrialFunctions(MX)

(w,w_phi)=TestFunctions(MX)

#-----[weak formulation - left hand side]-----495

a1=-inner(sigma0(u,u_phi),eps(w))*dx(0)-inner(sigma1(u,u_phi),eps(w))*dx(1)

a2=inner(D0(u,u_phi),E(w_phi))*dx(0)+inner(D1(u,u_phi),E(w_phi))*dx(1)

a=a1+a2

#-----[weak formulation - right hand side]-----

l1=-tr3[0]*w[0]*ds(3)-tr3[1]*w[1]*ds(3)500

l=l1

#----[solution of weak formulation]-----

A,b=assemble_system(a,l,bcs,finalize_tensor=True)

solver=LUSolver(A,’default’)

mx=Function(MX)505

solver.solve(A,mx.vector(),b)

#-----[spliting weak solution to displacements and el.potential]-----

u_sol,phi_sol=mx.split()

#-----[stresses and el.displacements aproximation]-----

T_plot=TensorFunctionSpace(mesh,"CG",1,shape=(2,2))510
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s0=project(sigma0(u_sol,phi_sol),T_plot)

s1=project(sigma1(u_sol,phi_sol),T_plot)

D_plot=TensorFunctionSpace(mesh,"CG",1,shape=(2,))

d0=project(D0(u_sol,phi_sol),D_plot)

d1=project(D1(u_sol,phi_sol),D_plot)515

#-----[result saving]-----

file1=File(’bicrack1_u.pvd’)

file1 << u_sol

file2=File(’bicrack1_phi.pvd’)

file2 << phi_sol520

file3=File(’bicrack1_s0.pvd’)

file3 << s0

file4=File(’bicrack1_s1.pvd’)

file4 << s1

file5=File(’bicrack1_d0.pvd’)525

file5 << d0

file6=File(’bicrack1_d1.pvd’)

file6 << d1
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