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Mixed Finite Elements for
Flexoelectric Solids
Flexoelectricity (FE) refers to the two-way coupling between strain gradients and the
electric field in dielectric materials, and is universal compared to piezoelectricity, which
is restricted to dielectrics with noncentralsymmetric crystalline structure. Involving
strain gradients makes the phenomenon of flexoelectricity size dependent and more
important for nanoscale applications. However, strain gradients involve higher order
spatial derivate of displacements and bring difficulties to the solution of flexoelectric
problems. This dilemma impedes the application of such universal phenomenon in multi-
ple fields, such as sensors, actuators, and nanogenerators. In this study, we develop a
mixed finite element method (FEM) for the study of problems with both strain gradient
elasticity (SGE) and flexoelectricity being taken into account. To use C0 continuous ele-
ments in mixed FEM, the kinematic relationship between displacement field and its gradi-
ent is enforced by Lagrangian multipliers. Besides, four types of 2D mixed finite elements
are developed to study the flexoelectric effect. Verification as well as validation of the
present mixed FEM is performed through comparing numerical results with analytical
solutions for an infinite tube problem. Finally, mixed FEM is used to simulate the electro-
mechanical behavior of a 2D block subjected to concentrated force or voltage. This study
proves that the present mixed FEM is an effective tool to explore the electromechanical
behaviors of materials with the consideration of flexoelectricity.
[DOI: 10.1115/1.4036939]

Keywords: mixed finite elements, flexoelectricity, electromechanical coupling, strain
gradient effect

1 Introduction

Piezoelectric effect is the most technologically exploited two-
way coupling between electric fields and strains in dielectrics.
However, this phenomenon only exists in noncentrosymmetric
materials where the positive and negative charge centers can be
separated by a uniform strain [1,2]. As a more universal two-way
electromechanical coupling in materials, flexoelectric effect,
which describes the coupling between electric fields and strain
gradients, has attracted a fair amount of attention over the past
decade. In principle, flexoelectric effect exists in all dielectric
materials since the presence of strain gradients may break the
inversion symmetry of materials [1,3,4]. Thus, flexoelectricity has
been studied intensively in a wide variety of materials including
crystalline materials [5–8], liquid crystals [9–11], polymers
[12–14], and lipid bilayer membranes [4,15]. Since strain
gradients scale with the sample size, another feature that makes
flexoelectricity different from piezoelectricity is the size effect.
Because of this feature, flexoelectric effect is more prominent and
useful at the length scale of submicron or nanometer [16,17].

Flexoelectricity was first introduced by Mashkevich and
Tolpygo based on a study of lattice dynamics [18]. Later, Kogan
established a phenomenological theory describing the flexoelec-
tric effects and roughly estimated the magnitude of flexoelectric
coefficients [11]. Sharma and his coworkers established a
systematic mathematical framework for the flexoelectric effect
and showed that, with designed structure, certain materials

without piezoelectricity might exhibit apparent piezoelectricity
[16,19–21]. Hu and Shen constructed a general variational princi-
ple where the influence of electrostatic force was taken into
account and pointed out that electrostatic force must be consid-
ered in nanodielectrics [22]. The surface effects were also intro-
duced into theoretical model of flexoelectricity by Shen and Hu
[23]. More recently, the mathematical framework for flexoelec-
tricity has been extended to soft materials with the consideration
of finite deformation [3,24,25]. A potential application of flexoe-
lectricity is in the field of energy harvesting. Deng et al. developed
a complete theoretical continuum model for flexoelectric nano-
scale energy harvesting [26]. Liang et al. studied the performance
of layered flexoelectric energy harvesters and found that the
energy conversion efficiency for triple layer system is much larger
than the single and double layer systems [27]. It is worthwhile to
mention that the application of flexoelectricity is not just limited
to energy harvesting. Recent review works on flexoelectricity
indicate the significance of flexoelectricity in multiple fields
including two-dimensional materials, biological membranes, and
others [5–7,12,28–33].

The boundary value problems (BVP) for flexoelectricity are
governed by fourth-order partial differential equations. For such
high-order partial differential equations, only a few simplified
problems, such as cylindrical or disk problems with axisymmetric
boundary conditions [34], cantilever or simply supported flexo-
electric beams [5,35], and pyramid-compression model [31], can
be solved analytically. Thus, numerical methods are required to
solve flexoelectric problems with complex structures.

Recently, the phase-field method within Ginzburg–Landau
framework has been employed to evaluate the significance of flex-
oelectricity on domain patterns [36,37] and polarization switching
in ferroelectrics [38]. Chen et al. developed a three-dimensional
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phase-field method with the consideration of flexoelectricity [39].
In addition, the meshfree method was applied to cantilever beam
and pyramid model by which flexoelectric coefficients are
evaluated [28]. FEM has long been considered as an effective
approach for solving BVP of partial differential equations. Com-
pared with meshfree method, less computational cost is needed in
FEM, and FEM can be easily incorporated into commercial pack-
age. However, conventional displacement-based FEM approach
cannot be readily used to compute flexoelectricity since the C1

continuity is required for the displacement field. In a most recent
work, Yvonnet and Liu adopted C1 Argyrus triangular elements
for the finite element modeling of soft flexoelectric solids at finite
strains [40].

Another way of solving higher order partial differential equa-
tions is using mixed FEM. In fact, some FEMs with SGE have been
developed [41–43]. The representative works are due to Xia and
Hutchinson [41] and by Shu and Fleck [42], in which the rotation
angles as extra nodal degrees-of-freedom (DOF) are considered. In
particular, elements developed by Herrmann [43] have extra nodal
DOF of couple stress. However, these elements can only provide
numerical results for couple stress theory. For general strain gradi-
ent elasticity [44], Shu et al. [45] developed several mixed 2D finite
elements with displacement gradient and Lagrangian multipliers as
extra nodal DOF. All elements developed by Shu and Fleck passed
patch test and had excellent performance in the calculation for bio-
material and stress concentration problem. But some triangle ele-
ments failed in problems such as classical elasticity degenerated
from SGE. Amanatidou and Aravas [46] developed some mixed
elements, which perform well in a number of typical problems with
exact solution available. Later, based on Amanatidou et al.’s work,
Mao and Purohit constructed a mixed formulation for flexoelectric-
ity and developed a 2D element to simulate BVPs [47]. The
element developed by Mao and Purohit has extra nodal DOF for
polarizations.

In this paper, we develop a mixed FEM with strain gradient
elasticity and flexoelectricity considered. First, a modified energy
functional based on the total electrical enthalpy of the system is
proposed. The kinematic constrain between the displacement field
and its spatial gradient is enforced via Lagrangian multiplier
method used by Shu et al. [45] and Amanatidou and Aravas [46].
Then, four types of 2D mixed finite elements are developed. The
performances of four types of elements are validated by compar-
ing the FEM results with analytical solutions of an infinite tube
problem. Finally, the developed method is further used to simulate
the electromechanical properties of a 2D block under concentrated
force and voltage loadings. This paper is organized as following:
The theory of flexoelectricity is presented in Sec. 2. Section 3
details the derivation of modified functional. The sketch and
implementation of four types of mixed finite elements are given in
Sec. 4. Section 5 shows the FEM simulation of an infinite tube
problem using the developed elements and compares FEM results
with analytical solutions. In Sec. 6, a 2D block subjected to con-
centrated force or voltage is studied using the developed mixed
FEM. Conclusions are given in Sec. 7.

2 Flexoelectricity Theory

Here, we make a brief review of the linear theory proposed by
Sharma and coworkers [19,20]. The general linear constitutive
law for dielectric solid can be derived from the electrical enthalpy
density, hereafter denoted as h. Then, h, under the assumption of
small deformation, can be written as [16]

h ¼ 1

2
cijkleijekl þ

1

2
bijklmngijkglmn � dijkEiejk � fijklEigjkl

þ gijklEi;jekl �
1

2
jijEiEj (1)

where eij, gijk, and Ei are the strain, strain-gradient, and electric
field, respectively. They are defined as eij ¼ ð1=2Þðuj;i þ ui;jÞ,

gijk ¼ ejk;i, and Ei ¼ �u;i, where u and u are displacement vector
and electric potential, respectively. In Eq. (1), the first term corre-
sponds to the strain energy density with cijkl being the elastic
constant tensor. The second term is the energy density due to the
strain gradient elasticity and the corresponding material coeffi-
cient is bijklmn. The third and fourth terms of Eq. (1) are the
contribution from piezoelectricity and direct flexoelectricity,
respectively. The fifth term denotes the converse flexoelectricity,
which couples the strain and the gradient of electric field. dijk, fijkl,
and gijkl are the piezoelectric, direct flexoelectric, and converse
flexoelectric coefficients, respectively. Using integration by parts,
the direct and converse flexoelectricity can be expressed in only
one term as �eijklEigjkl [20], where eijkl ¼ fijkl þ giklj, which has
the same form as flexoelectricity. Thus, we only consider the
direct flexoelectricity term in this work. The electrostatic energy
is given by the last term, in which the dielectric coefficient tensor
jij relates to the dielectric constant e0 in vacuum, the electric sus-
ceptibility vij, and Kronecker delta symbol dij by e0ðdij þ vijÞ.

For isotropic materials, the electrical enthalpy density in the
absence of piezoelectricity has the form of

h ¼ 1

2
kejjekk þ lejkejk þ

1

2
l2 kejj;iekk;i þ 2lejk;iejk;i

� �
�f1ejj;iEi � 2f2eij;iEj �

1

2
jEiEi (2)

where k and l are Lam�e’s constants; l is the length scale of the
material; f1 and f2 are two independent components of flexoelec-
tric coefficient fijkl; and j is the dielectric coefficient. Here, for
simplicity, the strain gradient energy term is adopted as in
Ref. [48]. Using Eq. (2), we readily have the constitutive equations

rjk ¼
@h

@ejk
¼ keiidjk þ 2lejk (3)

sijk ¼
@h

@ejk;i
¼ l2 kell;idjk þ 2lejk;i

� �
� f1Eidjk � 2f2Ejdik (4)

Di ¼ �
@h

@Ei
¼ jEi þ f1ell;i þ 2f2eji;j (5)

where rij, sijk, and Di are stress tensor, higher order stress tensor,
and the electric displacement, respectively. Clearly, sijk is coupled
with the electric field in the last two terms in Eq. (4). Meanwhile,
Di is composed of the classical electrostatics and is coupled with
the strain gradients as well.

For a bulk X, the stress rij, higher order stress sijk, and body
force bk follow the equilibrium equation:

rjk;j � sijk;ij þ bk ¼ 0 (6)

Maxwell equation

Di;i ¼ 0 (7)

and the associated boundary conditions

(1) traction boundary condition

�tk ¼ rjknj � sijk;inj � DjðsijkniÞ þ ðDlnlÞninjsijk on @Xt (8)

(2) displacement boundary condition

�uk ¼ uk on @Xu (9)

(3) higher order traction boundary condition

�rk ¼ sijkninj on @Xr (10)
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(4) normal derivatives boundary condition

�vk ¼ Duk ¼ uk;ini on @Xv (11)

(5) surface charge boundary condition

�x ¼ Dini on @XD (12)

(6) electric potential boundary condition

�u ¼ u on @Xu (13)

Note that @Xt [ @Xu¼ @Xr [ @Xv¼ @Xu [ @Xx¼ @X and @Xt \
@Xu¼ @Xr \ @Xv¼ @Xu \ @Xx¼ 1 should be satisfied in
Eqs. (8)–(13), where @X is the boundary surface of bulk X.
Equations (6) and (7) along with the boundary conditions
(Eqs. (8)–(13)) constitute a BVP. All the boundary conditions
above can be derived from the variational principle [19,22]. Com-
pared with classical electromechanical theory, Eqs. (10) and (11)
are two additional boundary conditions induced due to strain gra-
dient effect and flexoelectricity.

3 Constrained Variational Principle

Based on the electrical enthalpy density (2) and boundary con-
ditions (8)–(14), the total electrical enthalpy H in bulk X may be
expressed as the sum of internal energy and external work

H u;uð Þ ¼
ð

X

1

2
rjkejk þ

1

2
sijkgijk �

1

2
DiEi

� �
dv

�
ð

X
bkukdv�

ð
@Xt

�tkukds�
ð
@Xx

�xuds�
ð
@Xx

�rkvkds

(14)

In Eq. (14), it can be seen that H is a function of the displacement
and electric potential. The presence of strain gradients in Eq. (14)
requires C1 continuous interpolations of the displacement field in
conventional displacement-based finite element method. This
brings difficulties to the implement of FEM. Instead of employing
C1 continuous elements, we treat the displacement gradient wij as

an independent variable so that the order of derivatives is reduced
and C0 continuous elements can be adopted. Note that, according
to the kinematic constraints, wij is actually related to the displace-

ment field uj by wij ¼ uj;i and the tangent component wt
ij on

boundary @X is related to ut
j by wt

ij ¼ ut
j;i. Such constraints can be

further incorporated into Eq. (14) via Lagrangian multipliers.
Then, we have

P u;u;w;a; cð Þ

¼ H� u;u;wð Þ þ
ð

X
ajk wjk � uk;j
� �

dvþ
ð
@X

cjk wt
jk � ut

k;j

� �
ds

¼
ð

X

1

2
rjkejk þ

1

2
sijkgijk �

1

2
DiEi

� �
dv

þ
ð

X
ajk wjk � uk;j
� �

dvþ
ð
@X

cjk wt
jk � ut

k;j

� �
ds

�
ð

X
bkukdv�

ð
@Xt

�tkukds�
ð
@Xx

�xuds�
ð
@Xx

�rkvkds (15)

where strain ejk and displacement u are the same as that in
Eq. (14) and the strain gradient gijk is a function of the displace-
ment gradient wjk. Thus, only the first-order derivatives of
independent variables such as u, u, and w appear in Eq. (15).
Comparing with Eq. (14), we have introduced two types of addi-
tional independent variables, i.e., displacement gradient wjk and
Lagrangian multipliers ajk and cjk. Equation (15) is an equivalent
way of describing the BVP as defined by Eqs. (6)–(13). Such

equivalence is proved in Appendix A. In Appendix A, two
Lagrangian multipliers ajk and cjk as two independent variables
are identified as the divergence of sijk in X and the projection of
sijk on the boundary @X to the normal direction ni.

From Eq. (15), the variation of P is given by

dP ¼
ð

X
ðrjkdejk þ sijkdwjk;i � DidEiÞdvþ

ð
X
dajkðwjk � uk;jÞdv

þ
ð

X
ajkðdwjk � duk;jÞdvþ

ð
@X

cjkðdwt
jk � dut

k;jÞdv

þ
ð
@X

dcjkðwt
jk � ut

k;jÞdv�
ð

X
bkdukdv�

ð
@Xt

�tkdukds

�
ð
@Xx

�xduds�
ð
@Xx

�rkdvkds (16)

According to the variational principle, let dP ¼ 0 in Eq. (16),
then we haveð

X
ðrjkdejk þ sijkdwjk;i � DidEiÞdvþ

ð
X
dajkðwjk � uk;jÞdv

þ
ð

X
ajkðdwjk � duk;jÞdvþ

ð
@X

cjkðdwt
jk � dut

k;jÞds

þ
ð
@X

dcjkðwt
jk � ut

k;jÞds

¼
ð

X
bkdukdvþ

ð
@Xt

�tkdukdsþ
ð
@Xx

�xdudsþ
ð
@Xx

�rkdvkds

(17)

In Eq. (17), the kinematic constraints (wij ¼ uj;i and wt
ij ¼ ut

j;i) are
strictly satisfied. But in C0 continuous elements, such relationship
can only be guaranteed approximately. Therefore, we relax the
boundary constraint wt

ij ¼ ut
j;i and rewrite Eq. (17) asð

X
ðrjkdejk þ sijkdwjk;i � DidEiÞdv

þ
ð

X
dajkðwjk � uk;jÞdvþ

ð
X
ajkðdwjk � duk;jÞdv

�
ð

X
bkdukdvþ

ð
@Xt

�tkdukdsþ
ð
@Xx

�xdudsþ
ð
@Xx

�rkdvkds

(18)

Equation (18) also represents the principle of virtual work. Discre-
tizing the independent variations in Eq. (18) leads to the finite ele-
ment equations (B14) of the flexoelectric problem. Appendix B
details the derivation of Eq. (B14) for 2D isotropic materials.

4 Implementation of Elements

In this section, we construct four types of 2D mixed finite ele-
ments in triangular (T) or quadrilateral shapes (Q) in (x1; x2) plane
using the serendipity process [49]. Figure 1 shows degrees-of-
freedom (DOF), shape functions, and integration rule for four
types of elements. For the convenience of description, the element
types (T and Q) along with their total number of DOF (n) are rep-
resented by Tn and Qn.

Figures 1(a) and 1(b) display a seven-node triangular element
(T37) and a nine-node quadrilateral element (Q47). Both of them
have 7DOFs at each corner node. They are displacement u (u1 and
u2), electric potential u, and displacement gradient w (w11, w12,
w21 and w22). Besides, for each “midside” node, there are 3DOFs,
i.e., displacement u (u1 and u2) and electric potential u. Also,
there is a node at the interior of all each element, which is termed
as inner node. For elements T37 and Q47, there are 7DOFs at the
inner node in total, i.e., Lagrangian multiplier a (a11, a12, a21, and
a22), displacement u (u1 and u2), and electric potential u.
Displacement and electric potential fields are interpolated using
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quadratic shape function in T37 and Q47, while the displacement
gradient are interpolated linearly. Lagrangian multipliers as DOFs
are only assigned to inner nodes. Meanwhile, no continuity condi-
tion is required for the Lagrangian multipliers as shown in
Eq. (15). These facts allow us to keep Lagrangian multipliers as
constants within elements T37 and Q47.

Following the same construction procedure for elements T37
and Q47, we construct two other elements T45 and Q59. Different
from T37 and Q47, elements T45 and Q59 have 11DOFs at each
corner node. They are displacement u (u1 and u2), electric poten-
tial u, displacement gradient w (w11, w12, w21, and w22), and
Lagrangian multiplier, a (a11, a12, a21, and a22). At midside node,
their nodal DOFs are same as that of elements T37 and Q47,
whereas 3DOFs, i.e., displacement u (u1 and u2), and electric
potential u correspond to inner node. For elements T45 and Q59,
both displacement and electric potential fields are interpolated
using quadratic shape functions and the displacement gradient are
interpolated linearly. Different from the treatment in elements
T37 and Q59, a linear shape function is applied for the interpola-
tion of Lagrangian multipliers in elements T45 and T59. This
implies that the Lagrangian multiplier is continuous in the
domain. In addition, the quadratic integration scheme [49] is used
for all of the four types of elements in present FEM
implementation.

5 Validation of the Mixed FEM

5.1 A Comparison Between the Numerical and Analytical
Results. In Secs. 3 and 4, with the effects of flexoelectricity and
strain gradient considered, we have developed the 2D mixed FEM

for isotropic materials and constructed four types of elements. To
validate the mixed FEM, we attempt to perform a test simulation
for a typical BVP with its analytical solution available. Here, we
consider an infinite long tube with an axisymmetric cross section
as shown in Fig. 2. In fact, such problem can be thought as a plane
strain problem with specified boundary conditions applied to the

Fig. 1 Schematic of four types of elements in the triangular (T) and quadrilateral (Q) shapes.
(a) T37, (b) Q47, (c) T45, and (d) Q59. Elements T37 and T45 have seven nodes (three corner
nodes, three midside nodes, and one inner node). Elements Q47 and Q59 have nine nodes
(four corner nodes, four midside nodes, and one inner node). “�” denotes components of
displacement (u1, u2) and electric potential (u). “1” and “3” are DOFs of displacement gradi-
ent (w11, w12, w21, w22) and Lagrangian multiplier (a11, a12, a21, a22).

Fig. 2 An infinite length tube with an axisymmetric cross sec-
tion. The inner and outer radii of model are ri 5 10 lm and
ro 5 20 lm, respectively. On the inner and outer surfaces, the
radial displacements are ui 5 0.045 lm and uo 5 0.05 lm. Volt-
age difference across the internal and external surface is 1.0 V.
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inner and outer surfaces. The results calculated using FEM are
compared with the corresponding analytical solution.

In the micrometer scale, the flexoelectricity and strain gradient
are significantly strong and cannot be neglected. We therefore fix
the model size on the order of micrometers and analyze how the
strain gradient and flexoelectricity affect the solution of problem
in comparison with that of the classical elastic theory. The geo-
metric parameters of model as well as the material constants are
given in Fig. 2 and Table 1, respectively. The magnitudes of the
two flexoelectric coefficients are 10�6 C/m, and the length scale l
is set to be 2 lm, the same order as the model size.

For such axisymmetric problem, the analytical solution can be
obtained as follows: Substituting the constitutive equations
(3)–(5) into governing equations (6) and (7), we get

u;ii �
f

j
r2ui;i ¼ 0 (19)

ðkþ lÞð1� l2
1r2Þui;ik þ lð1� l2r2Þuk;ii ¼ 0 (20)

where r2 is the Laplacian operator and

f ¼ f1 þ 2f2 (21)

l21 ¼ l2 þ f 2

kþ lð Þj (22)

In the polar coordinates, both displacement and electric potential
are only function of radius, i.e.,

ur ¼ uðrÞ (23)

u ¼ uðrÞ (24)

Then, Eq. (20) can be written in polar coordinates as

1� l20r2 þ l2
0

r2

� �
r2u rð Þ � u rð Þ

r2

� �
¼ 0 (25)

where

l20 ¼ l2 þ f 2

kþ lð Þj (26)

It should be noted thatr2uðrÞ � ðuðrÞ=r2Þ in Eq. (25) is the gradi-
ent of volume strain duðrÞ=dr þ uðrÞ=r contributed by radial and
circumferential strains. Let l0 ¼ 0, Eq. (25) reduces to the dis-
placement governing equation of classical elasticity, which
describes a uniform volume strain inside material. Moreover,
Eq. (25) is constrained by the following boundary conditions:

urjr¼ri
¼ uri

; urjr¼ro
¼ uro

(27)

urjr¼ri
¼ uri

; urjr¼ro
¼ uro

(28)

srrrjr¼ri
¼ srrrjr¼ro

¼ 0 (29)

Equations (27) and (28) are boundary conditions for the displace-
ment and electric potential on the inner and outer surface of tube.
The exact values of uri

, uro
, uri

, and uro
have been given in Fig. 2.

Equation (29) represents the boundary condition for the higher
order stress, which is set as zero. The displacement solution for
Eq. (25) can be readily obtained as [48,50]

u rð Þ ¼ C1r þ C2

1

r
þ C3I1

r

l0

� �
þ C4K1

r

l0

� �
(30)

and electric potential is

u rð Þ ¼ C5ln rð Þ þ C6 þ
f

j
du rð Þ

dr
þ u rð Þ

r

� �
(31)

Using boundary conditions (Eqs. (27)–(29)), constants C1 � C6 in
Eqs. (30) and (31) are determined as 1.8081� 10�3, 0.2873lm2,
�4.0108� 10�6lm, �0.6936� 10�1lm, 4.4217 V, and �2.2598 V.
For classical elasticity and electrostatic (l0¼ 0), we note that the last
two terms in Eq. (30) and boundary condition (Eq. (29)) should be
ignored, and there are only four constants (C1, C2, C5, C6) to be
determined.

Now, we are in the position to perform the FEM simulation for
the plane strain problem mentioned earlier. In our simulations,
four element types T37, T45, Q47, and Q59 shown in Fig. 1 are
used. Due to the symmetry of such problem, only a quarter of the
model is considered as shown in Fig. 3. This requires additional
six symmetric boundary conditions as shown in Fig. 3. For such a
model, the domain is meshed with 360 quadrilateral elements
(Q47 and Q59). Further subdivision of each quadrilateral element
into two triangular elements yields 720 triangular elements (T37
and T45).

From simulations, several typical quantities such as radial
strain, circumferential strain, radial displacement, and electric
potentials can be directly obtained from the nodal DOF. Figure 4
compares four quantities versus radius obtained from FEM simu-
lation using four types of elements with the analytical solutions.
Clearly, FEM results are in excellent agreement with the analyti-
cal solutions. It should be noted that the FEM results of strain in
Fig. 4 are directly obtained from the nodal value of displacement
gradient w. This is different from the conventional way of com-
puting the strain using the displacement u in the displacement-
based element. It is known that the later approach usually gives

Fig. 3 Schematic of quadrilateral FEM Mesh for a quarter of
the model shown in Fig. 1. Total numbers of quadrilateral ele-
ments (Q47 and Q59) are 360. Each quadrilateral element can
be divided into two triangular elements. Thus, such a model
can be further meshed with 720 triangular elements (T37, T45).

Table 1 Material coefficients

E (GPa) � l (lm) f1 (C/m) f2 (C/m) j (C/m/v)

139:0 0.3 2 1:0� 10�6 1:0� 10�6 10�9
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imprecise strain on the boundary and further smoothing scheme is
indispensable.

5.2 Discussions for Different Material Properties. Equations
(3)–(13) outline the theoretical framework in which the theory
of elasticity (classical elasticity and SGE) is coupled with the
electrostatics and FE. For such a theoretical framework, strain
gradient effects would disappear if letting the material length
scale be zero (l ¼ 0 in Eq. (4)). Besides, the flexoelectricity can
also be eliminated by letting flexoelectric coefficients equal zero
(f1 ¼ f2 ¼ 0 in Eqs. (4) and (5)). In this section, we compare the
results of five special cases using different theories by consider-
ing (1) both strain gradient and flexoelectric effects (SGE&FE),
(2) pure FE, (3) SGE, (4) classical elasticity, and (5) electro-
static. This section discusses how four types of elements (T37,
T45, Q47, and Q59) perform for the five special cases. Note that
all simulations in this section are performed using the model in
Sec. 5.1 and all constants for theoretical formulations (Eqs. (30)
and (31)) for these cases are given in Appendix C.

The analytical solution (Eq. (31)) implies that the volume strain
directly influences the distributions of electrical potential inside
material. Herein, the gradient of volume strain directly influences
the electric field. Figure 5(a) shows the variations of the volume
strains versus radius for four cases. Clearly, the classical elasticity
gives a constant volume strain. If considering the contribution
of strain gradients, a smooth variation of strain can be obtained
[51]. In the present simulation, the consideration of strain gradient
and flexoelectric results in more smooth variations of strain

particularly near the boundaries. Thus, the radial strain (@u/@r)
close to inner and outer surfaces could be reduced. In addition, the
circumferential strains (u/r) on the inner and outer surface are
constants regardless of different theories because of fixed dis-
placement boundary conditions. These facts explain why volume
strain varies and decreases from the inner surface to the outer one
for other three cases (SGE&FE, SGE, and pure FE). For a given
radius, the deviation of volume strain from classical elastic result
for pure FE is smaller than those with considering strain gradient
effects, which is ascribed to flexoelectric coefficients adopted in
the numerical test.

Figure 5(b) shows the corresponding gradient of volume strains
in Fig. 5(a). It can be seen that the gradient for the case of classi-
cal elasticity is zero because of constant volume strain in
Fig. 5(a). For other cases (pure FE, SGE, SGE&FE), it should be
noted that relatively larger volume strain gradient can be seen
near the inner and outer surfaces. This is caused by the high order
traction boundary condition on inner and outer surface.

Figure 5(c) displays the variation of electric potential versus
radius, and Fig. 5(d) is the distribution of corresponding electric
field. It can be seen that pure flexoelectric effects slightly impact
distribution of electric potential and electric field by comparing
results for electrostatic and pure FE. However, a remarkably dif-
ferent variation trend appears for SGE&FE. This can be explained
by the principle of superposition. The difference with electrostatic
result is caused by volume strain gradient, which can generate
polarization in tube without voltage imposed on outer surface.

From Figs. 5(b) and 5(d), it is also found that, with the decrease
of radius, both the volume strain gradient and the radial electric

Fig. 4 Comparison of FEM results with analytical solution for (a) radial displacement, (b) electric potential, (c)
radial strain, and (d) circumferential strain versus radius. Considering the axisymmetry of model, all results are
extracted from the FEM results along the 45 deg axis (marked by black lines in the contours).
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field for the case of SGE&FE gradually deviate from that of the
pure FE case. This means that the consideration of SGE may be
crucial when the sample size approaches its length scale l.

From above analysis, FEM using four element types (Q59,
Q47, T45, T37) can predict accurate results in comparison with
the exact solutions (Fig. 5(b)). It should be noted that FEM simu-
lations using element types T37 and T45 based on Eq. (17) may

fail if the strain gradient effect and flexoelectricity are not consid-
ered simultaneously. This is because the absence of the strain gra-
dient effect and flexoelectricity results in the material property
matrixes DEg and Dgg equaling to zero (Eqs. (B11) and (B13) in
Appendix B). This could further lead to the singularity of stiffness
matrix. For this reason, we need to fix Eq. (15) using augmented
Lagrangian method (ALM) [52] as

Fig. 5 Comparison of FEM results with exact solution of five special cases for (a) volume strain, (b) radial gradi-
ent of volume strain, (c) electric potential, and (d) electric field versus radius. Scatter and solid lines denote FEM
results using element Q59 and analytical solution, respectively. Note that FEM results using elements T37, T45,
and Q47 are not shown since they are equal to those for element Q59.

Fig. 6 Plane strain model of a block subjected to a concentrated (a) force and (b) voltage.
The width and height of the block are 20 lm and 10 lm, respectively. At the bottom of
block, displacements in the horizontal and vertical directions are fixed to be zero and so
is electric potential. Concentrated force F and voltage V are 100 lN and 5 V, respectively.
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P u;u;w;a; cð Þ ¼ H� u;u;wð Þ þ
ð

X
ajk wjk � uk;j
� �

dvþ
ð

X
b wjk � uk;j
� �2

dvþ
ð
@X

cjk wt
jk � ut

k;j

� �
ds

¼
ð

X

1

2
rjkejk þ

1

2
sijkgijk þ

1

2
DiEi

� �
dvþ

ð
X
ajk wjk � uk;j
� �

dvþ
ð
@X

cjk wt
jk � ut

k;j

� �
ds

�
ð

X
bkukdv�

ð
@Xt

�tkukds�
ð
@Xx

�xuds�
ð
@Xx

�rkvkds (32)

by introducing an additional term
Ð
Xbðwjk � uk;jÞ2dv, where b is a

constant. It has been proven that such a fix is an efficient way of
avoiding the singularity of stiffness matrix [46]. In the present
calculations, the constant b is taken as Young’s modulus of
materials.

6 Applications

This section gives an example of applying mixed FEM to study
the mechanical and electric properties of a 2D block with flexoe-
lectricity. We consider two cases with top surface of the block
subjected to a concentrated force and voltage, respectively, as
illustrated in Fig. 6. It is expected that there exist significant strain
gradient and electric field beneath the loading point. Such can be
seen in the atomic force microscope experiment in which the
polarization switching of ferroelectrics can be realized via larger
strain gradient. The material deforms due to the flexoelectricity
when the concentrated voltage acts on the top surface of block.

Figure 7 displays the FEM mesh using quadrilateral element for
the model shown in Fig. 6. The total number of elements is 3200.
As discussed in Sec. 5, same results can be obtained by using all
four types of elements. Here, element Q59 is adopted, which
yields totally 65,691 DOF. To accurately capture the gradient var-
iation of strain and electric field, the refined and coarse meshes
are employed in the areas near and far away the external loading
points. Moreover, the material parameters are same as those used
in Sec. 5. It should be noted that the concentrated force and volt-
age cause the singularity in the results. To avoid that, we approxi-
mately use a uniformly distributed force and voltage in a 200 nm
width area (1% of model width) to replace the concentrated
counterparts.

Figures 8 and 9 present the FEM result of the block under con-
centrated force. At the point subjected to concentrated force, the
electric potential and field are much larger than those away from
the force acting point. Meanwhile, they vary markedly due to the
significant variation of strain gradient in the block caused by con-
centrated force. Such phenomenon may enlighten us to realize
local polarization switching by only exerting pure mechanical
load without electric field applied.

Fig. 7 FEM meshes using quadrilateral elements for the model
in Fig. 6

Fig. 8 Distributions of (a) electric potential and (b) electric
field component E2 for block subjected to concentrated force

Fig. 9 Variation of electric potential and electric field component E2 at top surface of block
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Figure 10 shows that deformation can be induced by applied
electric field alone. Significant strain beneath the area of voltage
acting can be seen for the reason of strain gradient coupled with
electric field. Meanwhile, the deformation caused by voltage influ-
ences the distribution of the electric potential and electric field as
shown in Fig. 11. This is because the generated strain gradient can
lead to extra polarization in material. Herein, the two-way cou-
pling feature for flexoelectricity is demonstrated.

7 Conclusions

In this paper, we derive a modified functional considering both
flexoelectric and strain gradient effects via Lagrangian multiplier
method. The modified functional contains no higher order deriva-
tive of independent variables and is proved to be equivalent to the
BVP by the variational principle. Thus, it can be directly used to
construct conventional C0 continuous elements. Four types of 2D
mixed FEM elements with flexoelectricity and strain gradient
elasticity are developed with extra nodal DOF of displacement
gradient and Lagrangian multipliers. In order to reduce total DOF
in simulation, we adopt different shape functions for different var-
iables. The developed mixed FEM provides a general numerical
approach for the study of strain gradient and flexoelectric effects.

In order to validate the mixed FEM, we first derived the analyti-
cal solution of an infinite tube problem for five different theories
(SGE, SGE&FE, pure FE, classical elasticity, and electrostatic
theory). Then, we compared the FEM results with the analytical
solution for all the cases. It is found that FEM results of all ele-
ment types are in good agreement with analytical solutions for all
five theories. It is observed from the comparison that, with the
consideration of strain gradients, the strain field becomes
smoother. This smooth effect is particularly prominent near the
boundary.

Finally, we employ the mixed FEM to study a 2D block sub-
jected to a concentrated force or voltage loading, and analyze the
distribution of strain and electric field inside the block. It is found
that both the strain and the electric field are very strong near the
loading point and gradually decay as going away from it. Due to
the flexoelectric effect, the electric field and deformation can be
generated by either pure mechanical or electrical loadings. The
present mixed FEM is applicable in analyzing the electromechani-
cal behavior of materials with complex structures or under com-
plex loadings.
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Appendix A

In the modified functional, displacement, displacement-
gradient, electric potential, and Lagrangian multiplier are inde-
pendent variables. Then, the variational of the modified functional
can be expressed as

dP ¼
ð

X
ðrjkdejk þ sijkdwjk;i � DidEiÞdv

þ
ð

X
dajkðwjk � uk;jÞdvþ

ð
X
ajkðdwjk � duk;jÞdv

þ
ð
@X

cjkðDjduk � dwt
jkÞdsþ

ð
@X

dcjkðDjuk � wt
jkÞds

�
ð

X
bkdukdv�

ð
@X

�tkdukds

�
ð
@Xx

�xduds�
ð
@Xx

�rkdvkds (A1)

Fig. 10 Distributions of strains (a) e11 and (b) e22 generated by
applied voltage via flexoelectricity

Fig. 11 Variations of (a) electric potential along symmetry axis (x1 5 0) and (b) electric field component E2 at
the bottom surface of the block. Results from SGE&FE are compared with those from the electrostatic theory.
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where Dj ¼ ðdjm � njnmÞ@m is the tangent gradient operator, wt
jk ¼

ðdjm � njnmÞwmk is the tangent part of displacement gradient, and
n is the normal vector on @X. Applying Gaussian divergence
theory to Eq. (A1), the first part including variational of gradient
in Eq. (A1) becomesð

X
ðrjkdejk þ sijkdwjk;i � DidEiÞdv

¼
ð

X
ð�rjk;jduk � sijk;idwjk � Di;iduÞdv

þ
ð
@X
ðrjknjduk þ sijknidwjk þ DiniduÞds (A2)

ð
X
ajkduk;jdv ¼

ð
X
�ajk;jdukdvþ

ð
@X

ajknjdukds (A3)

Meanwhile, the part containing tangent gradient operator Djð:Þ in
Eq. (A1) can be written as

cjkDjduk ¼ DjðcjkdukÞ � DjðcjkÞduk (A4)

DjðcjkdukÞ ¼ ðDlnlÞnjcjkduk þ nqeqpm@mðemljnlcjkdukÞ (A5)

Using Stokes’ theorem, integration of the last part in Eq. (A5)
equals to zero. Then, by using Eqs. (A2)–(A5), Eq. (A1) becomes

dP ¼
ð

X
ð�rjk ;j þ ajk;j � bkÞdukdv

þ
ð

X
ð�sijk;i þ ajkÞdwjkdvþ

ð
X

Di;idudv

þ
ð

X
ðwjk � uk;jÞdajkdvþ

ð
@X

cjknjdvkds

þ
ð
@X
½ðrjk � ajkÞnj � DjðckjÞ þ ðDlnlÞnjcjk�dukds

þ
ð
@X
ðsijkni � cjkÞdwjkds�

ð
@X

Diniduds

�
ð
@Xt

�tkdukds�
ð
@Xx

�xduds�
ð
@Xx

�rkdvkds (A6)

Letting dP ¼ 0, we have the BVP governed by

rjk;j � ajk;j þ bk ¼ 0

sijk;i � ajk ¼ 0

Di;i ¼ 0

wjk � uk;j ¼ 0

(A7)

in the bulk and

cjk ¼ sijkni (A8)

on the surface. The boundary conditions can also be obtained as

(1) traction boundary condition

�tk ¼ rjknj � sijk;inj � DjðsijkniÞ þ ðDlnlÞninjsijk on @Xt (A9)

(2) displacement boundary condition

�uk ¼ uk on @Xu (A10)

(3) higher order traction boundary condition

�rk ¼ sijkninj on @Xr (A11)

(4) normal derivatives boundary condition

�vk ¼ Duk ¼ uk;ini on @Xv (A12)

(5) surface charge boundary condition

�x ¼ Dini on @XD (A13)

(6) electric potential boundary condition

�u ¼ u on @Xu (A14)

In the above, we prove that the equations above are equivalent to
all the governing equations and boundary conditions presented
Sec. 2. Thus, the constructed modified functional is also equiva-
lent to the original BVP. From the above derivations, the Lagran-
gian multipliers can be identified as ajk ¼ sijk;i and cjk ¼ sijkni.

Appendix B

Here, we use the weak form of virtual work principle in Sec. 3
to construct the element stiffness matrix. First, the displacements,
potentials, displacement gradients, and Lagrangian multipliers
within the elements are obtained by the interpolation of nodal var-
iables of the elements and expressed as

u ¼
u1

u2

" #
; ~u ¼

~u1

~u2

�

2
64

3
75; ~ua ¼

~u1

~u2

" #
a

;
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" #
¼
X

a

Na
u 0

0 Na
u

" #
~u1

~u2

" #
a
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(B1)

~u ¼
~u1

~u2

�

2
4

3
5; u ¼

X
a
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u ~ua ¼ Nu ~u (B2)
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a ¼
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3
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66664
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77775
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(B4)

In Eqs. (B1)–(B4), Na
u , Na

u, Na
w, and Na

a are the shape functions of
displacement, potential, displacement gradient, and Lagrange
multipliers, respectively. Thus strain, displacement gradient, and
electric field can be obtained as

e ¼
e11

e22

e12

2
4

3
5 ¼

@

@x1

0

0
@

@x2

1

2

@
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1

2

@
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66666664
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� 	
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(B5)
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E ¼ E1

E2

� 	
¼
� @

@x1

� @

@x2

2
6664

3
7775u ¼ LEuu ¼ LEuNu ~u ¼ BE ~u (B6)
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Strain gradient can be seen as the first-order derivative of w, and
then
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~w (B8)

Assume the area of an element is Xe, and corresponding boundary
conditions on @Xe are known. Then the matrix form of Eq. (A1)
has the form ofð

Xe
deTDeeedvþ

ð
Xe

dgTDgggdv�
ð

Xe
dETDEeedv

�
ð

Xe
deTDT

EeEdv�
ð

Xe
dETDEggdv�
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Xe

dgTDT
EgEdv

þ
ð
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ð

Xe
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�
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dETDEEEdv

¼
ð
@Xe

t

duT�t
e
dsþ

ð
@Xe

r

dvT~redsþ
ð
@Xe

x

duT �xeds (B9)

In Eq. (B9), I is unit matrix; piezoelectric tensor DEe equals to
zero for isotropic materials. Stiffness tensor Dee, flexoelectric ten-
sor DEg, dielectric tensor DEE, and constitutive tensor Dgg of strain
gradient term are

Dee ¼
kþ 2l k 0

k kþ 2l 0

0 0 4l

2
4

3
5 (B10)

DEg ¼
f1 þ 2f2 f1 0 0 0 2f2

0 0 2f2 f1 f1 þ 2f2 0

" #
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Equation (B9) becomes
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where

kuu ¼
ð

Xe
BT

e DeeBedv kuu ¼ �
ð

Xe
BT

EDEEBEdv

kww ¼
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Xe
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g DggBgdv kuw ¼
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and

Fu ¼
ð
@Xt

NT
u
�tds ; Fu ¼

ð
@Xx

NT
u �xds; Fu ¼

ð
@Xx

NT
u �xds

(B16)

Thus, the element stiffness matrix and nodal force vector are

Ke ¼

kuu 0 kuu kua

kuu kuu kuw 0

0 kwu kww kwa

kau 0 kaw 0

2
66664

3
77775; Fe ¼

Fu

Fu

Fw

0

2
66664

3
77775 (B17)

Appendix C

Table 2 List of six constants C12C6 for analytical solution in
Sec. 5

SGE&FE SGE
Pure
FE

Classical
elasticity Electrostatic

C1 (10�3) 1.8081 1.8074 1.8333 1.8333 —
C2 (lm2) 0.2873 0.2804 0.2708 0.2667 —
C3 (10�6lm) �4.0108 �0.0610 �0.1780 — —
C4 (10�1lm) �0.6936 �2.7530 �0.6255 — —
C5 (V) 4.4217 1.4427 2.6000 — 1.4427
C6 (10 V) �2.2698 �0.3322 �1.7495 — �0.3322
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