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The present study aims at determining the elastic stress and displacement fields around

the tips of a finite-length crack in a microstructured solid under remotely applied plane-

strain loading (mode I and II cases). The material microstructure is modeled through the

Toupin–Mindlin generalized continuum theory of dipolar gradient elasticity. According

to this theory, the strain-energy density assumes the form of a positive-definite function

of the strain tensor (as in classical elasticity) and the gradient of the strain tensor

(additional term). A simple but yet rigorous version of the theory is employed here by

considering an isotropic linear expression of the elastic strain-energy density that

involves only three material constants (the two Lamé constants and the so-called

gradient coefficient). First, a near-tip asymptotic solution is obtained by the

Knein–Williams technique. Then, we attack the complete boundary value problem in

an effort to obtain a full-field solution. Hypersingular integral equations with a cubic

singularity are formulated with the aid of the Fourier transform. These equations are

solved by analytical considerations on Hadamard finite-part integrals and a numerical

treatment. The results show significant departure from the predictions of standard

fracture mechanics. In view of these results, it seems that the classical theory of

elasticity is inadequate to analyze crack problems in microstructured materials. Indeed,

the present results indicate that the stress distribution ahead of the crack tip exhibits a

local maximum that is bounded. Therefore, this maximum value may serve as a measure

of the critical stress level at which further advancement of the crack may occur. Also, in

the vicinity of the crack tip, the crack-face displacement closes more smoothly as

compared to the standard result and the strain field is bounded. Finally, the J-integral

(energy release rate) in gradient elasticity was evaluated. A decrease of its value is

noticed in comparison with the classical theory. This shows that the gradient theory

predicts a strengthening effect since a reduction of crack driving force takes place as the

material microstructure becomes more pronounced.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

It is well known that classical continuum theories possess no intrinsic length scale and thus fail to predict the scale
effects observed experimentally in problems with geometric length scales comparable to the lengths of material
microstructure. On the contrary, generalized continuum theories intend to capture effects of microstructure extending the
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range of applicability of the ‘continuum’ concept in an effort to bridge the gap between classical continuum theories and
atomic-lattice theories. Notable examples appearing in relatively recent studies include the strengthening effects observed
in bending and torsion (Kakunai et al., 1985; Fleck et al., 1994; Stolken and Evans, 1998), the buckling of elastic fibers in
composites (Fleck and Shu, 1995), micro-indentation experiments where the measured indentation hardness increases as
the width of the indent decreases (Ma and Clarke, 1995; Poole et al., 1996), fracture of cellular materials (Chen et al., 1998),
and scale effects in simple structural components (Giannakopoulos and Stamoulis, 2007). An interesting review on
experiments in generalized continua is also given by Lakes (1995).

One of the most effective generalized continuum theories proved to be in recent years the theory introduced by Toupin
(1962) and Mindlin (1964)—see the brief literature review on applications and extensions, below. The general framework
appears under the names ‘strain-gradient theory’ or ‘grade-two theory’ or ‘dipolar gradient theory’. This approach is
appropriate for formulations of both elasticity and plasticity problems and, in general, allows for the emergence of
interesting boundary-layer effects that can capture corresponding phenomena (see e.g. Shi et al., 2000; Georgiadis, 2003;
Georgiadis et al., 2004). In such a formulation, characteristic lengths appear in the mechanical behavior of the material and
these lengths can be related with the size of microstructure. Scale effects are incorporated therefore in the stress analysis.
Typical cases of continua amenable to such an analysis are periodic material structures like those, e.g., of crystal lattices,
crystallites of a polycrystal or grains of a granular material.

Historically, ideas underlying generalized continuum theories were advanced already in the 19th century by Cauchy
(1851) and Voigt (1887), but the subject was generalized and reached maturity only in the 1960s and 1970s with the works
of Toupin (1962), Mindlin (1964), Bleustein (1967), Mindlin and Eshel (1968), and Germain (1973).

The Toupin–Mindlin gradient theory had already some successful applications on stress concentration elasticity
problems concerning holes and inclusions, during the 1960s and 1970s (see e.g. Cook and Weitsman, 1966; Eshel and
Rosenfeld, 1970). More recently, this approach and related extensions for microstructured materials have been employed to
analyze various problems involving, among other areas, wave propagation (see e.g. Vardoulakis and Georgiadis, 1997;
Georgiadis et al., 2000, 2004), fracture (see e.g. Wei and Hutchinson, 1997; Zhang et al., 1998; Chen et al., 1998, 1999; Shi
et al., 2000; Georgiadis, 2003; Grentzelou and Georgiadis, 2005, 2008; Wei, 2006; Karlis et al., 2007; Radi, 2008), and
plasticity (see e.g. Fleck et al., 1994; Vardoulakis and Sulem, 1995; Begley and Hutchinson, 1998; Fleck and Hutchinson,
1997, 1998; Gao et al. 1999; Huang et al., 2000, 2004; Hwang et al., 2002; Radi, 2007). In addition, efficient numerical
techniques (see e.g. Shu et al., 1999; Amanatidou and Aravas, 2002; Tsepoura et al., 2002; Tsamasphyros et al., 2007) have
been developed to deal with problems analyzed by the Toupin–Mindlin theory.

Regarding now appropriate length scales for strain-gradient theories, as noted by Zhang et al. (1998), although strain-
gradient effects are associated with geometrically necessary dislocations in plasticity, they may also be important for the
elastic range in microstructured materials. Indeed, Chen et al. (1998) developed a continuum model for cellular materials
and found out that the continuum description of these materials obeys a gradient elasticity theory. In the latter study, the
intrinsic material length was naturally identified with the cell size. Also, in wave propagation dealing with electronic-
device applications, surface-wave frequencies on the order of GHz are often used and therefore wavelengths on the micron
order appear (see e.g. White, 1970). In such situations, dispersion phenomena of Rayleigh waves at high frequencies can only
be explained on the basis of a gradient elasticity theory (Georgiadis et al., 2004). In addition, the latter study provides an
estimate for a microstructural parameter (i.e. the so-called gradient coefficient c) employed in some simple material
models. This was effected by considering that the material is composed wholly of unit cells having the form of cubes with
edges of size 2h and comparing the forms of dispersion curves of Rayleigh waves obtained by the Toupin–Mindlin approach
with the ones obtained by the atomic-lattice analysis of Gazis et al. (1960). It was found that c is of the order of (0.1h)2.
Generally, theories with elastic strain-gradient effects are intended to model situations where the intrinsic material lengths
are of the order of 0.1–10mm (see e.g. Shi et al., 2000). Since the strengthening effects arising from strain gradients become
important when these gradients are large enough, these effects will be significant when the material is deformed in very

small volumes, such as in the immediate vicinity of crack tips, notches, small holes and inclusions, and micrometer
indentations.

In the present study, the most common version of the Toupin–Mindlin theory, i.e. the so-called micro-homogeneous
case (see Section 10 in Mindlin, 1964), is employed to deal with the plane-strain problem of a finite-length crack. According
to this, each material particle has three degrees of freedom (the displacement components) and the micro-density does not
differ from the macro-density. Also, among the three forms of that version, we chose form II in Mindlin’s theory which
assumes a strain-energy density that is a function of the strain tensor and its gradient. The latter case is different from the
common case of couple-stress theory, which assumes a strain-energy density that depends upon the strain tensor and the
gradient of rotation vector (Mindlin and Tiersten, 1962). Notice also that the couple-stress elasticity and form II of Mindlin’s
gradient elasticity give results for plane-strain boundary value problems that do not share the same general features of
solution behavior, e.g. order of singularities and crack-face displacements in crack problems (Grentzelou and Georgiadis,
2005). This can be realized from the fact that not only the number of traction boundary conditions are different in the two
cases (four in form II of gradient theory, three in couple-stress theory) but, also, the governing equations are different.
Therefore, we do not intend to discuss here crack problems within the context of the couple-stress theory but refer the
interested reader to the papers by Huang et al. (1997, 1999), and Gourgiotis and Georgiadis (2007, 2008).

Now, we concentrate on the subject of the present work, i.e. plane-strain crack problems within the form II of gradient
elasticity. In the literature, there are two general results and a few analytical and numerical results related to this subject.
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The first general result is a uniqueness theorem for crack problems (Grentzelou and Georgiadis, 2005) showing that a
necessary condition for uniqueness within the form II of gradient elasticity, in the absence of body forces, is a bounded
strain field around the crack tip in addition to the condition of a bounded displacement field (the latter kinematical
condition is the only one that should hold within the classical elasticity—cf. Knowles and Pucik, 1973). The second general
result concerns the derivation of the J, L and M integrals for cracks within the gradient elasticity (Georgiadis and
Grentzelou, 2006; Grentzelou and Georgiadis, 2008). It was shown that: (i) the J-integral (identified with the energy release
rate at the crack tip) is path-independent in the case of a quasi-static response and a homogeneous material, (ii) the
L-integral is path-independent in the case of a quasi-static response and a homogeneous and isotropic material, and (iii)
the M-integral is always path-dependent. The latter result for the M-integral is, of course, in contrast to what happens in
classical elasticity—the path-dependence in gradient elasticity is due to the existence of characteristic material lengths
that renders the strain-energy density non-invariant under a self-similar scale change. In the present work, after obtaining
the stress and displacement fields, we will calculate the J-integral based on the result mentioned before (Georgiadis and
Grentzelou, 2006; Grentzelou and Georgiadis, 2008) and reach to important conclusions about the effects of
microstructure.

Regarding now solutions of problems closely related to our problem, Shi et al. (2000) studied the elastic problem of a
semi-infinite crack in a body of infinite extent by considering a gradient theory, which is the limit of a gradient plasticity
theory (Fleck and Hutchinson, 1997) with the plastic work hardening exponent n ¼ 1. A remote classical K field was
imposed in this problem. Notice that we treat here the case of a finite-length crack. Moreover, Shi et al. (2000) considered
only the case of an incompressible material. This assumption reduced the number of independent boundary conditions
along the crack faces, in the plane-strain case, from four to three (two monopolar force tractions and one dipolar force
traction). Another work employing the previous framework but without resorting to the incompressibility assumption is
due to Wei (2006). This is a numerical study employing finite elements. Finally, Karlis et al. (2007) used the same version of
gradient elasticity considered here in a numerical study employing boundary elements. They restricted attention to
calculate stress intensities and crack-face displacements. They did not consider asymptotics neither provide calculations of
the stress distribution ahead of the crack tip and the energy release rate. Notice that in the present study, besides
addressing the latter issues (which are important for the physics of the problem), we also examine the effect of Poisson’s
ratio in the solution and the ratio of the crack length over the material length. At any rate, of course, a study based mainly
on analytical considerations and providing a detailed full-field solution (like the present one) has an advantage over
numerical solutions based on finite or boundary elements, especially in new areas of research where benchmark solutions
do not exist.

Our analysis starts with asymptotic considerations for both mode I and II cases. The stress and displacement fields at the
vicinity of the crack tip are derived using the Knein–Williams technique. Next, we formulate integral equations, with the
aid of Fourier transforms, for the full-field solutions of the boundary value problems. In both mode I and II cases, systems of
coupled hypersingular integral equations with a cubic singularity result. Then, these systems of equations are discretized
using the collocation method. The numerical solution of the systems shows, in general, that: (i) a cracked solid governed by
form II of dipolar gradient elasticity behaves in a more rigid way (having increased stiffness) as compared to a solid
governed by classical elasticity. Indeed, the crack-face displacements exhibit an r3/2 variation (cusp-like closure), where r is
the radial distance from the crack tip. The strain field is also bounded at the crack-tip vicinity and this concurs with the
uniqueness theorem mentioned before. (ii) The so-called total stress exhibits a typical boundary-layer behavior with an
initial very small area, adjacent to the crack tip, of cohesive tractions (with an r�3/2 singularity), the tractions then taking on
positive values and reaching a bounded maximum. This behavior was also observed before by Shi et al. (2000), Georgiadis
(2003), and Wei (2006). Notice that the length of the cohesive-traction area ranges from 0.45c1/2 to 0.77c1/2, i.e. this length
is very small since c is of the order of (0.1h)2, where 2h is the size of the unit cell. (iii) Despite the hypersingular character of
stress, it turns out that the J-integral (energy release rate) remains bounded. This is because the crack faces close in a
smooth manner. The J-integral in gradient elasticity tends continuously to its counterpart in classical elasticity as c1/2/a-0,
where c1/2 is the material length and a is the half of the crack length. For c1/2a0, a decrease of its value is noticed in
comparison with the classical theory and this indicates that the rigidity effect dominates over the stress aggravation effect
in the energy release rate. The ratio J/Jclas., where Jclas. is the expression of the J-integral in classical elastic fracture
mechanics, decreases monotonically with increasing values of c1/2/a. This finding shows that the gradient theory predicts a
strengthening effect since a reduction of the crack driving force (‘stress concentration’) takes place as the material
microstructure becomes more pronounced. An analogous result for stress concentration around cylindrical holes was
observed in an early paper using form II of gradient elasticity where the stress concentration factor decreases for increasing
values of material lengths (Eshel and Rosenfeld, 1970).

2. Fundamentals of dipolar gradient elasticity

In this section, we will give a brief account of form II of Mindlin’s theory of dipolar gradient elasticity. More detailed
presentations can be found in Mindlin (1964) and in Mindlin and Eshel (1968). The theory is best introduced by the
following form of the first law of thermodynamics:

r _E ¼ tpq _�pq þmrpq@r _�pq, (1)
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where small strains and displacements are assumed, and a Cartesian rectangular coordinate system Ox1x2x3 is considered
for a 3D continuum (indicial notation and the summation convention will be used throughout). In the above equation,
qp( )�q( )/qxp, a superposed dot denotes time derivative, the Latin indices span the range (1–3), r is the mass density of the
continuum, E is the internal energy per unit mass, �pq ¼ 1=2

� �
@puq þ @qup

� �
¼ �qp is the linear strain tensor, uq is the

displacement vector, tpq is the monopolar stress tensor, and mrpq is the dipolar (or double) stress tensor (a third-rank
tensor) expressed in dimensions of ½force� ½length��1. The nature of the dipolar stresses and the notation used are explained
by Mindlin (1964).

Next, in accord with (1), the following form is taken for the strain-energy density W:

W �Wð�pq; @r�pqÞ (2)

which is assumed to be a positive-definite function. Further, stresses can be defined in the standard variational manner

tpq �
@W

@�pq
; mrpq �

@W

@ð@r�pqÞ
. (3a,b)

Then, the equations of equilibrium (global equilibrium) and the traction boundary conditions along a smooth boundary
(local equilibrium) can be obtained from variational considerations (Mindlin, 1964; Bleustein, 1967). Assuming the absence
of body forces, the appropriate expression of the Principle of Virtual Work is written as (Bleustein, 1967)Z

V
tpqd�pq þmrpqdð@r�pqÞ
� �

dV ¼

Z
S

tðnÞq duq dSþ

Z
S

T ðnÞqr @qðdurÞdS, (4)

where V is the region occupied by the body, and S is the surface of the body. The symbol d denotes weak variations and it
acts on the quantity existing on its right. In the above equation, tðnÞq is the true monopolar traction, TðnÞpq is the true dipolar
traction, and np is the outward unit normal to the boundary along a section inside the body or along the surface of it.
Examples of the dipolar tractions T ðnÞpq can be found in the work by Georgiadis and Anagnostou (2008).

The equations of equilibrium and the traction boundary conditions take the following form:

@pðtpq � @rmrpqÞ ¼ 0 in V , (5)

PðnÞq ¼ npðtpq � @rmrpqÞ � DpðnrmrpqÞ þ ðDjnjÞnrnpmrpq on bdy, (6)

RðnÞq ¼ nrnpmrpq on bdy, (7)

where bdy denotes any boundary along a section inside the body or along the surface of it, Dp( )�qp( )�npD( ) is the surface
gradient operator, D( )�nrqr( ) is the normal gradient operator, PðnÞq � tðnÞq þ ðDrnrÞnpTðnÞpq � DpT ðnÞpq is the auxiliary force
traction, and RðnÞq � npTðnÞpq is the auxiliary double force traction. Finally, let Ss be the portion of the surface S of the body on
which external tractions are prescribed.

The kinematical boundary conditions are stated next. These boundary conditions were extracted in the context of the
Principle of Complementary Virtual Work (Georgiadis and Grentzelou, 2006):

uq : given on Su, (8a)

DðuqÞ : given on Su, (8b)

where Su is the portion of the surface S of the body on which both displacements and their normal derivatives are
prescribed. Of course, Ss[Su ¼ S and Ss\Su ¼+ hold true.

Introducing the constitutive equations of the theory is now in order. The simplest possible linear and isotropic equations
result from the following strain-energy density function (Georgiadis et al., 2004; Lazar and Maugin, 2005)

W ¼ ð1=2Þl�pp�qq þ m�pq�pq þ cð1=2Þlð@r�ppÞð@r�qqÞ þ cmð@r�pqÞð@r�pqÞ, (9)

where c is the gradient coefficient having dimensions of [length]2, and (l,m) are the standard Lamé constants with
dimensions of ½force� ½length��2. In this way, only one new material constant is introduced with respect to classical linear
isotropic elasticity. Combining (3) with (9) provides the constitutive equations

tpq ¼ ldpq�jj þ 2m�pq; mrpq ¼ c@rðldpq�jj þ 2m�pqÞ, (10a,b)

where dpq is the Kronecker delta. Eqs. (9) and (10) written for a general 3D state will be employed below only for a
plane-strain state. As Lazar and Maugin (2005) pointed out, the particular choice of (9) is physically justified and possesses
a symmetry of the strain-energy density of the form W ¼ ð1=2Þtpq�pq þ cð1=2Þð@rtpqÞð@r�pqÞ showing that this simple
constitutive model exhibits dependence upon the strain and stress gradients.

Notice that fully anisotropic constitutive relations have been used in deriving general results (energy theorems,
uniqueness, balance laws and energy release rates) in recent works on gradient elasticity (Grentzelou and Georgiadis, 2005,
2008; Georgiadis and Grentzelou, 2006), but use of the general relations poses serious difficulties in solving specific
boundary value problems. Therefore, the assumption of isotropy and the simplification using a single material length
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mentioned above greatly facilitate the analysis of boundary value problems of gradient elasticity. The full constitutive
relations in the isotropic case involve five material constants besides the two Lamé constants (Mindlin, 1964).

In summary, (5)–(8) and (10) are the governing equations for the isotropic linear gradient elasticity. Combining (5) with
(10) leads to the system of field equations. It is noticed that uniqueness theorems have been proved on the basis of positive
definiteness of the strain-energy density in cases of both regular and singular fields in the recent works of Georgiadis and
Grentzelou (2006), and Grentzelou and Georgiadis (2005). Finally, as shown by Georgiadis et al. (2004), the restriction of
positive definiteness of W requires the following inequalities for the material constants appearing in the theory employed
here ð3lþ 2mÞ40; m40; c40. In addition, stability for the field equations in the general inertial case was proved and to
accomplish this, the condition c40 is a necessary one.

3. Basic equations in plane strain

We present here the basic equations for a plane-strain state. A body occupying a domain in the (x,y)-plane is considered
with the z-axis being normal to this plane. Cartesian coordinates are considered with orthonormal base vectors (ex,ey) in
the plane considered. All tractions are assumed to act ‘inside’ the plane (x,y) and are independent upon z. The following 2D
displacement field is generated: ux�ux(x,y)a0, uy�uy(x,y)a0, uz�0.

In the plane-strain state, the independent components of the stress tensors that act ‘inside’ the plane (x,y) and that do
not vanish identically are three for tpq and six for mrpq. Eqs. (10) are utilized. The components of stresses in Cartesian
coordinates are

txx ¼ ðlþ 2mÞ@xux þ l@yuy; tyy ¼ ðlþ 2mÞ@yuy þ l@xux; txy ¼ mð@yux þ @xuyÞ, (11a2c)

mxxx ¼ c
@

@x
ðlþ 2mÞ@xux þ l@yuy

� �
; mxxy ¼ cm @

@x
ð@yux þ @xuyÞ,

mxyy ¼ c
@

@x
ðlþ 2mÞ@yuy þ l@xux

� �
; myxx ¼ c

@

@y
ðlþ 2mÞ@xux þ l@yuy

� �
,

myyy ¼ c
@

@y
ðlþ 2mÞ@yuy þ l@xux

� �
; myxy ¼ cm @

@y
ð@yux þ @xuyÞ, (12a 2 f)

where @xðÞ � @ðÞ=@x and @yðÞ � @ðÞ=@y.
In our asymptotic analysis, we will need to employ polar coordinates (r,y) with orthonormal base vectors (er,ey). The

system of these coordinates is shown in Fig. 1 and the stresses are now written as

trr ¼ ðlþ 2mÞ@rur þ lr�1ður þ @yuyÞ; tyy ¼ ðlþ 2mÞr�1ður þ @yuyÞ þ l@rur ,

try ¼ m½r�1ð@yur � uyÞ þ @ruy�, (13a 2 c)

mrrr ¼ c@rtrr ; mrry ¼ c@rtry; mryy ¼ c@rtyy; myrr ¼ cr�1 @ytrr � 2tryð Þ,

myyr ¼ cr�1 @ytyr þ trr � tyyð Þ; myyy ¼ cr�1 @ytyy þ 2tryð Þ, (14a 2 f)

where @rð Þ � @ð Þ=@r and @yð Þ � @ð Þ=@y.
Next, we introduce the total stresses. These quantities result from the monopolar traction conditions (Georgiadis, 2003;

Georgiadis and Grentzelou, 2006). To define the total stresses arisen in our boundary value problems in Cartesian
coordinates, we consider a plane (x,y ¼ const.). The normal unit vector to this plane is given as n ¼ (0,71). Then, the total
stresses along this plane are defined as

tyx � PðnÞx ¼ tyx �
@mxyx

@x
�
@myyx

@y
�
@myxx

@x
, (15)
y

x

r

�

Fig. 1. Cartesian and polar coordinate systems with an origin at the crack tip.



ARTICLE IN PRESS

P.A. Gourgiotis, H.G. Georgiadis / J. Mech. Phys. Solids 57 (2009) 1898–1920 1903
tyy � PðnÞy ¼ tyy �
@mxyy

@x
�
@myyy

@y
�
@myxy

@x
. (16)

In polar coordinates, we consider a plane (r,y ¼ const.) and define the total stresses along this plane as

tyr � PðnÞr ¼ tyr �
@myrr

@r
�
@mryr

@r
�

1

r

@myyr

@y
�

1

r
myrr �

1

r
mryr þ

1

r
myyy, (17)

tyy � PðnÞy ¼ tyy �
@myry

@r
�
@mryy

@r
�

1

r

@myyy

@y
�

1

r
mryy �

2

r
myry. (18)

It is noted that the total stress along the crack plane and ahead of the crack tip enters the expression for the energy
release rate. Moreover, the normal total stress ahead of the crack tip can be related with the cleavage strength of the
material. The derivation of (17) and (18) is given in Appendix A.

Finally, substituting the constitutive relations (11) and (12) in the equations of equilibrium (Eqs. (5)) leads to the
following system of coupled PDEs of the fourth order for the displacement components:

ð1� cr2
Þ½2ð1� nÞ@xð@xux þ @yuyÞ � ð1� 2nÞ@yð@xuy � @yuxÞ� ¼ 0, (19a)

ð1� cr2
Þ½2ð1� nÞ@yð@xux þ @yuyÞ þ ð1� 2nÞ@xð@xuy � @yuxÞ� ¼ 0, (19b)

in Cartesian coordinates, and

sr � c½r2sr � r�2sr � 2r�2@ysy� ¼ 0, (20a)

sy � c½r2sy � r�2sy þ 2r�2@ysr� ¼ 0, (20b)

in polar coordinates. In the above equations, n ¼ l/2(l+m) is the Poisson’s ratio, r2( )�qx
2( )+qy

2( )�qr
2( )+r�1qr( )+r�2qy

2( )
is the 2D Laplace operator, and the quantities (sr,sy) are given as

sr ¼ 2ð1� nÞ@rð@rur þ r�1@yuy þ r�1urÞ � ð1� 2nÞr�1@yð@ruy � r�1@yur þ r�1uyÞ, (21a)

sy ¼ 2ð1� nÞr�1@yð@rur þ r�1@yuy þ r�1urÞ þ ð1� 2nÞ@rð@ruy � r�1@yur þ r�1uyÞ. (21b)

The details of the derivation of (20) are given in Appendix A. Finally, in the limit c-0, the Navier–Cauchy equations of
classical linear isotropic elasticity are recovered from (19) or (20).

4. Asymptotic fields around the crack tip

In this section, the Knein–Williams asymptotic technique (Knein, 1927; Williams, 1952; Barber, 1992) is employed to
explore the nature of the stress and displacement fields near the crack tip. This is accomplished by attaching a set of (r,y)
polar coordinates at the crack tip and by expanding the displacement field as an asymptotic series of separated variable
terms, each satisfying the traction-free boundary conditions on the crack faces defined by n ¼7ey (see Fig. 1). Thus, the
leading terms of the displacement components are written as

urðr; yÞ ¼ rpUrðyÞ; uyðr;yÞ ¼ rpUyðyÞ, (22)

where p is a complex (in general) constant to be determined.
The boundary conditions for a traction-free crack at y ¼7p read

tyyðr;�pÞ ¼ 0; tyrðr;�pÞ ¼ 0; myyrðr;�pÞ ¼ 0; myyyðr;�pÞ ¼ 0. (23)

Further, if only the dominant singular terms are retained in the asymptotic fields, the governing equations in (20) become

r2sr � r�2sr � 2r�2@ysy ¼ 0, (24a)

r
2sy � r�2sy þ 2r�2@ysr ¼ 0. (24b)

A general solution to (24) is obtained as

ur ¼ rp A1 cosððp� 1ÞyÞ þ A2 cosððpþ 1ÞyÞ þ A3 cosððp� 3ÞyÞ
� �
þ rp B1 sinððp� 1ÞyÞ þ B2 sinððpþ 1ÞyÞ þ B3 sinððp� 3ÞyÞ

� �
, (25a)

uy ¼ rp A4 sinððp� 1ÞyÞ � A2 sinððpþ 1ÞyÞ � A3
ðpþ 5� 8nÞ
ðp� 7þ 8nÞ

sinððp� 3ÞyÞ
� �

þ rp B4 cosððp� 1ÞyÞ þ B2 cosððpþ 1ÞyÞ þ B3
ðpþ 5� 8nÞ
ðp� 7þ 8nÞ cosððp� 3ÞyÞ

� �
, (25b)

where Ab and Bb (with b ¼ 1, 2, 3, 4) are unknown constants, corresponding to mode I and mode II cases, respectively.



ARTICLE IN PRESS

P.A. Gourgiotis, H.G. Georgiadis / J. Mech. Phys. Solids 57 (2009) 1898–19201904
Next, we utilize the constitutive equations in (13) and (14), retain only the most singular terms and write the boundary
conditions in terms of displacements at y ¼7p

tyrðr;�pÞ ¼ 0) �@rmyrr � @rmryr � r�1@ymyyr � r�1myrr � r�1mryr þ r�1myyy ¼ 0,

)�ð3� 4nÞr2@2
r @yur þ ð3� 2nÞ@yur þ ð5� 6nÞ@2

yuy � r@2
y@ruy

þ ð1� 2nÞ �r3@3
r uy þ 2r2@2

r uy þ r@r@yur � r@ruy � @
3
yur þ uy

� �
¼ 0, (26)

tyyðr;�pÞ ¼ 0)�@rmyyr � @rmryy � r�1@ymyyy � r�1mryy � 2r�1myyr ¼ 0,

) ð3� 4nÞr2@2
r @yuy þ 2ð2� 3nÞ@2

yur þ 2nr3@3
r ur þ 2n@yuy þ r@2

y@rur

þ ð1� nÞ 4r2@2
r ur þ 2@3

yuy � 2r@r@yuy � 2r@rur þ 2ur

� �
¼ 0, (27)

myyrðr;�pÞ ¼ 0) @r r�1ð2ur þ @yuyÞ
� �

þ r�2@yð@yur � 2uyÞ ¼ 0, (28)

myyyðr;�pÞ ¼ 0) ð1� nÞ @rðr
�1uyÞ þ r�2@yð2ur þ @yuyÞ

� �
þ n@r r�1ð@yur � uyÞ

� �
¼ 0. (29)

Now, (26)–(29) together with (25) constitute an eigenvalue problem. For the existence of a non-trivial solution, the
determinant of the coefficients of (Ab,Bb) should vanish and this gives, for both plane-strain modes, the following equation
for p:

ðp� 1Þ4ðp� 2Þ2 1� cosð4ppÞ½ � ¼ 0) p ¼
n

2
; n ¼ 0;1;2; . . . . (30)

The appropriate eigenvalue will be determined from the requirement of a bounded strain energy in the vicinity of the
crack tip. The detailed procedure within classical elasticity is described by Barber (1992). By noticing that in our case the
strain-energy density behaves at most as W � ð@r�ijÞ

2, we conclude that the integrability of W requires that the following
inequality be satisfied 2(p�2)+14�1)p41. Thus, the most singular admissible value of the exponent is p ¼ 3/2. However,
it is noted that the eigenvalue p ¼ 1 also satisfies (30). In this case, a constant strain field results which does not contribute
to dipolar stresses (this is becausere ¼ 0, in this case). In this special case, the strain-energy density W in (9) behaves as in
classical elasticity, i.e. W � �2

pq and it is bounded. As will be shown below, this constant (lower-order) term, which is
analogous to the T-stress field in classical fracture mechanics (see e.g. Anderson, 1995), does not contribute to the J-integral
and to the crack opening displacement. We also notice that the existence of a field associated with the eigenvalue p ¼ 1 was
first pointed out by Radi (2008) for the mode III crack problem in couple-stress elasticity. Aravas and Giannakopoulos
(2009) made a similar observation in strain-gradient elasticity. Finally, we note that the case po1 is excluded since it
always leads to unbounded strain energy in the vicinity of the crack tip.

Below, the cases of mode I and II asymptotic crack-tip fields for r-0 will be presented separately.
4.1. Mode I asymptotic crack-tip field

In view of the symmetry of the mode I problem, we obtain the corresponding displacement field as

ur ¼ r G1 þ G2 cos2y
� �

þ A1r3=2 ð3� 8nÞcos
y
2
þ 3
ð11� 16nÞ
ð41� 32nÞ cos

3y
2

� �

� A2r3=2 3
ð11� 16nÞ
ð41� 32nÞ cos

3y
2
� cos

5y
2

� �
, (31a)

uy ¼ � G2r sin 2yþ A1r3=2 ð9� 8nÞsin
y
2
� 3
ð13� 16nÞ
ð41� 32nÞ sin

3y
2

� �

þ A2r3=2 3
ð13� 16nÞ
41� 32nð Þ

sin
3y
2
� sin

5y
2

� �
, (31b)

where (G1,G2) are the amplitude factors for the lower-order crack-tip fields and (A1,A2) are the amplitude factors for the
dominant terms of order 3/2. All these constants are left unspecified by the asymptotic analysis. One may observe that
along the crack faces (y ¼7p) the term �G2r sin 2y vanishes and, therefore, the lower-order does not contribute to the
crack opening displacement.

In addition, by virtue of (13), (14) and appropriate definitions in the previous analysis, the monopolar, dipolar and total
stresses are written as

trr ¼ 2mG1=ð1� 2nÞ
� �

þ 2mG2 cos 2yþ 3mA1r1=2 3cos
y
2
þ
ð33� 32nÞ
41� 32n cos

3y
2

� �
� 3mA2r1=2 ð33� 32nÞ

41� 32n cos
3y
2
� cos

5y
2

� �
.

(32a)
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tyy ¼ 2mG1=ð1� 2nÞ
� �

� 2mG2 cos 2yþ 3mA1r1=2 5 cos
y
2
�
ð17� 32nÞ
41� 32n

cos
3y
2

� �
� 3mA2r1=2 �

ð17� 32nÞ
41� 32n

cos
3y
2
þ cos

5y
2

� �
,

(32b)

tyr ¼ try ¼ �2mG2 sin 2yþ 3mA1r1=2 sin
y
2
�
ð23� 32nÞ
41� 32n

sin
3y
2

� �
� 3mA2r1=2 �

ð23� 32nÞ
41� 32n

sin
3y
2
þ sin

5y
2

� �
, (32c)

myyr ¼
3mc

2
A1r�1=2 �3cos

y
2
þ
ð31� 32nÞ
41� 32n cos

3y
2

� �
�

3mc

2
A2r�1=2 ð31� 32nÞ

41� 32n cos
3y
2
þ cos

5y
2

� �
, (33a)

myyy ¼ �
3mc

2
A1r�1=2 sin

y
2
þ sin

3y
2

� �
þ

3mc

2
A2r�1=2 sin

3y
2
þ sin

5y
2

� �
, (33b)

mrrr ¼
3mc

2
A1r�1=2 3cos

y
2
þ
ð33� 32nÞ
41� 32n

cos
3y
2

� �
�

3mc

2
A2r�1=2 ð33� 32nÞ

41� 32n
cos

3y
2
� cos

5y
2

� �
, (33c)

mryr ¼
3mc

2
A1r�1=2 sin

y
2
�
ð23� 32nÞ
41� 32n

sin
3y
2

� �
þ

3mc

2
A2r�1=2 ð23� 32nÞ

41� 32n
sin

3y
2
� sin

5y
2

� �
, (33d)

myrr ¼ �
3mc

2
A1r�1=2 7sin

y
2
þ
ð7þ 32nÞ
41� 32n sin

3y
2

� �
þ

3mc

2
A2r�1=2 ð7þ 32nÞ

41� 32n sin
3y
2
� sin

5y
2

� �
, (33e)

mryy ¼
3mc

2
A1r�1=2 5cos

y
2
�
ð17� 32nÞ
41� 32n cos

3y
2

� �
þ

3mc

2
A2r�1=2 ð17� 32nÞ

41� 32n cos
3y
2
� cos

5y
2

� �
, (33f)

tyr ¼
3mc

4
A1r�3=2 sin

y
2
þ sin

3y
2

� �
�

3mc

4
A2r�3=2 sin

3y
2
þ sin

5y
2

� �
, (34a)

tyy ¼
3mc

4
A1r�3=2 ð47� 32nÞ

41� 32n cos
3y
2
þ 5cos

y
2

� �
�

3mc

4
A2r�3=2 ð47� 32nÞ

41� 32n cos
3y
2
þ cos

5y
2

� �
. (34b)

4.2. Mode II asymptotic crack-tip field

In view of the antisymmetry of the mode II problem, we obtain the corresponding displacement field as

ur ¼ G3r sin 2yþ B1r3=2 sin
y
2
þ B2r3=2 �

3ð11� 16nÞ
37� 32n

sin
3y
2
þ sin

5y
2

� �
, (35a)

uy ¼ G3r cos 2y� B1r3=2 cos
y
2
þ B2r3=2 cos

5y
2
�

3ð13� 16nÞ
37� 32n cos

3y
2
þ

12

37� 32n cos
y
2

� �
, (35b)

where the constants (G3, B1, B2) are amplitude factors left unspecified by the asymptotic analysis.
By virtue of Eqs. (13), (14) and appropriate definitions in the previous analysis, the monopolar, dipolar and total stresses

are written in this case as

trr ¼ 2mG3 sin 2y� 3mB2r1=2 4n
ð1� 2nÞð37� 32nÞ

sin
y
2
þ
ð33� 32nÞ
37� 32n

sin
3y
2
� sin

5y
2

� �
þ

3m
1� 2n

B1r1=2 sin
y
2

, (36a)

tyy ¼ �2mG3 sin 2y� 3mB2r1=2 4ð1� nÞ
ð1� 2nÞð37� 32nÞ sin

y
2
�
ð17� 32nÞ
37� 32n sin

3y
2
þ sin

5y
2

� �
þ

3m
1� 2nB1r1=2 sin

y
2

, (36b)

tyr ¼ try ¼ 2mG3 cos2yþ 3mB2r1=2 2

37� 32n cos
y
2
�
ð23� 32nÞ
37� 32n cos

3y
2
þ cos

5y
2

� �
, (36c)

myyy ¼ �
3mc

2
B2r�1=2 �

4ð1� 3nÞ
ð1� 2nÞð37� 32nÞ

cos
y
2
þ
ð41� 32nÞ
37� 32n

cos
3y
2
þ cos

5y
2

� �
þ

3mc

2ð1� 2nÞ
B1r�1=2 cos

y
2

, (37a)

myyr ¼ �
3mc

2
B2r�1=2 �

6

37� 32n
sin

y
2
þ
ð31� 32nÞ
37� 32n

sin
3y
2
þ sin

5y
2

� �
, (37b)

mrrr ¼ �
3mc

2
B2r�1=2 �sin

5y
2
þ
ð33� 32nÞ
37� 32n sin

3y
2
þ

4n
ð37� 32nÞð1� 2nÞ sin

y
2

� �
þ

3mc

2ð1� 2nÞB1r�1=2 sin
y
2

, (37c)
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myrr ¼ �
3mc

2
B2r�1=2 4ð2� 3nÞ

ð1� 2nÞð37� 32nÞ cos
y
2
þ
ð7þ 32nÞ
37� 32n cos

3y
2
� cos

5y
2

� �
þ

3mc

2ð1� 2nÞB1r�1=2 cos
y
2

, (37d)

mryy ¼ �
3mc

2
B2r�1=2 4ð1� nÞ

ð37� 32nÞð1� 2nÞ
sin

y
2
�
ð17� 32nÞ
37� 32n

sin
3y
2
þ sin

5y
2

� �
þ

3mc

2ð1� 2nÞ
B1r�1=2 sin

y
2

. (37e)

mryr ¼ �
3mc

2
B2r�1=2 �

2

37� 32n cos
y
2
þ
ð23� 32nÞ
37� 32n cos

3y
2
� cos

5y
2

� �
, (37f)

tyr ¼
3mc

4
B2r�3=2 4ð2� 5nÞ

ð1� 2nÞð37� 32nÞ
cos

y
2
þ
ð41� 32nÞ
37� 32n

cos
3y
2
þ cos

5y
2

� �
þ

3mc

4ð1� 2nÞ
B1r�3=2 cos

y
2

, (38a)

tyy ¼ �
3mc

4
B2r�3=2 10

37� 32n sin
y
2
þ
ð47� 32nÞ
37� 32n sin

3y
2
þ sin

5y
2

� �
. (38b)

In view of all previous asymptotic results, we now notice the following points:
(i)
 The displacement field in both mode I and II cases is expressed as a sum of a linear in r term (lower-order term) that
gives rise to a constant strain field, and a dominant r3/2 term that defines the singular behavior of the dipolar and total
stresses. The linear term does not contribute to the crack opening displacement. The crack faces close more smoothly
as compared to the classical result exhibiting a variation �r3/2. This cusp-like closure has been observed in the
experiments by Elssner et al. (1994) and in the analyses by Shi et al. (2000) and Cleveringa et al. (2000).
(ii)
 The strain field is bounded at the crack-tip region. Thus, the necessary condition for uniqueness of the crack problem in
form II of Mindlin’s gradient elasticity (Grentzelou and Georgiadis, 2005) is fulfilled by the present asymptotic
solution.
(iii)
 The monopolar stresses are bounded in the vicinity of the crack-tip. The constant (independent upon the radial
distance r) terms in the asymptotic expansion for the monopolar stresses (see Eqs. (32) and (36)) correspond to the
T-stress field of classical fracture mechanics. However, in contrast with what happens in classical elasticity, where the
T-stress field appears only in the mode I crack problem (Anderson, 1995), it is observed here that a constant stress field
exists in both plane-strain modes. This is justified from the fact that the O(r) terms (in the asymptotic expansions for
the displacements in both mode I and II cases) are coupled, through the boundary conditions (23), with the O(r3)
terms.
(iv)
 The field of total stresses ahead of the crack tip exhibits a stronger singularity (�r�3/2) than the one predicted by
standard linear fracture mechanics. This behavior is in agreement with the analytical results of Shi et al. (2000). Such a
strong singularity was also suggested by the experimental evidence of Prakash et al. (1992) in extremely brittle
fracture.
5. Integral equation solution

For the full-field analytical solution, we will formulate systems of integral equations. The boundary value problems of
mode I and mode II finite-length cracks are attacked initially with the Fourier transform. In classical elasticity, the general
procedure of reducing mixed boundary value problems to singular integral equations is given, e.g., by Erdogan (1978).
Other more recent applications of this procedure in problems involving a more complex material response (coupled
thermoelasticity) were given by Brock and Georgiadis (2000, 2007). Also, an application of the technique within the context
of gradient elasticity for anti-plane shear crack problems can be found in Chan et al. (2008). In the present case, systems of
hypersingular integral equations arise.

Due to the symmetry (antisymmetry) of mode I (mode II) crack problem w.r.t. the plane y ¼ 0, only the upper half-plane
domain (�NoxoN, yZ0) will be considered. In this domain, the Fourier transform is utilized to suppress the
x-dependence in the field equations and the boundary conditions. The direct Fourier transform and its inverse are defined
as follows:

f nðx; yÞ ¼
1

ð2pÞ1=2

Z 1
�1

f x; yð Þ eixx dx, (39a)

f ðx; yÞ ¼
1

ð2pÞ1=2

Z 1
�1

f nðx; yÞ e�ixx dx, (39b)
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where i � ð�1Þ1=2. Transforming (19) with (39a) gives a system of ODEs for (u�x ;u
�
y) written in the following compact form:

K½ �
un

x

un
y

" #
¼

0

0

� �
, (40)

where the differential operator [K] is given as

½K� ¼
�½1þ cðx2

�d2
Þ�½d2

þ 2ð1� nÞðx2
�d2

Þ� �ixd½1þ cðx2
�d2

Þ�

�ixd½1þ cðx2
�d2

Þ� ½1þ cðx2
�d2

Þ�½x2
� 2ð1� nÞðx2

�d2
Þ�

" #
, (41)

with dðÞ � dðÞ=dy, d2
ðÞ � d2

ðÞ=dy2, etc.
The system of homogeneous differential equations in (40) has a solution different than the trivial one if and only if the

determinant of [K] is zero. Hence,

ðx2
�d2

Þ
2
½1þ cðx2

�d2
Þ�2 ¼ 0. (42)

The above equation has two double roots: d ¼ �jxj and d ¼ �½ð1=cÞ þ x2
�1=2. The first pair is the same as in classical

elasticity, whereas the second pair reflects the presence of gradient effects. The general solution of (40) is obtained after
some rather extensive algebra and it has the following form for the case of bounded (ux,uy) as y-+N:

un
x ðx; yÞ ¼ ix�1

jxjC1ðxÞ e�jxjy þ ix�1C2ðxÞ½yjxj � ð3� 4nÞ� e�jxjy þ C4ðxÞ e�yb, (43a)

un
y ðx; yÞ ¼ C1ðxÞ e�jxjy þ C2ðxÞy e�jxjy þ C3ðxÞ e�yb, (43b)

where b � bðxÞ ¼ ½ð1=cÞ þ x2
�1=2. The functions Cb(x) (with b ¼ 1, 2, 3, 4) are yet unknown functions that will be determined

through the enforcement of boundary conditions in each specific problem.
Now, since we have available the transformed general solution in (43), we can enforce the definitions of stresses in

Section 3 along with the Fourier-transform inversion in (39b) and write the total and dipolar stresses as

tyx ¼
m

ð2pÞ1=2

Z 1
�1

2icb2
�xC1ðxÞ þ ð2ð1� nÞsgnðxÞ � yxÞC2ðxÞ
� �

e�yjxj
n

þ
2cxb
ð1� 2nÞ ½inbC3ðxÞ � xð1� nÞC4ðxÞ� e�yb

�
e�ixx dx,

(44)

tyy ¼
m

ð2pÞ1=2

Z 1
�1

2cb2
½�jxjC1ðxÞ þ ð1� 2n� yjxjÞC2ðxÞ�e�yjxj

n
þxcb ibC4ðxÞ � xC3ðxÞ

� �
e�yb

o
e�ixx dx, (45)

myyy ¼
m

ð2pÞ1=2

Z 1
�1

2c x2C1ðxÞ � ð2ð1� nÞjxj � yx2
ÞC2ðxÞ

h i
e�yjxj

n
þ

2cb
ð1� 2nÞ bð1� nÞC3ðxÞ þ inxC4ðxÞ

� �
e�yb

�
e�ixx dx,

(46)

myyx ¼
m

ð2pÞ1=2

Z 1
�1

2icx jxjC1ðxÞ � ð3� 2n� yjxjÞC2ðxÞ
� �

e�yjxj
n

þbc ixC3ðxÞ þ bC4ðxÞ
� �

e�yb
o

e�ixx dx, (47)

where sgn( ) is the signum function.
Below, the mode I and mode II cases will be treated separately.

5.1. Mode I crack

Consider a straight crack of length 2a in a body of infinite extent. Plane-strain conditions are assumed to prevail, the
crack faces are traction free and the body is under a field of pure tension (see Fig. 2). The crack faces are defined by n ¼ (0,
71).

Then, according to (6)–(8), the following mixed boundary conditions hold in the upper half-plane (yZ0)

tyyðx;0Þ ¼ 0; myyxðx;0Þ ¼ 0 for jxjoa, (48a,b)

tyxðx;0Þ ¼ 0; myyyðx;0Þ ¼ 0 for �1oxo1, (49a,b)

uyðx;0Þ ¼ 0; Duxðx;0Þ � @yuxðx;0Þ ¼ 0 for jxj4a, (50a,b)

whereas the regularity conditions at infinity are written as

t1yy ! s0; t1xx ; t1yx; t1xy ! 0; mrpq ! 0ðr; p; q ¼ x; yÞ as R!1, (51)

where R ¼ (x2+y2)1/2 is the distance from the origin and the constant s0 denotes the remotely applied normal loading. It is
noted that the boundary conditions (49) are valid indeed on the whole crack-line (�NoxoN, y ¼ 0). This is due to the fact
that the dipolar stress myyy and the total shear stress tyx are antisymmetric w.r.t. the plane y ¼ 0 as it can also be seen by
direct inspection on the asymptotic relations (33b) and (34a).
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Fig. 2. Cracked body under remote tension in plane strain.
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The solution to the original boundary value problem can be obtained by the superposition of two auxiliary problems.
First, an un-cracked body of infinite extent subjected to boundary conditions (51) is examined. In that case, it can readily be
verified that there are no gradient effects induced and thus the body is in a state of pure tension. In the second auxiliary
problem, we consider a body with the same configuration as the original cracked body but with no remote loading now.
The only loading applied is along the crack faces. This consists of equal and opposite tractions to those generated in the un-
cracked body of the first auxiliary problem. In this case, Eqs. (49) and (50) still hold, whereas the boundary conditions along
the faces of the crack are written as

tyyðx;0Þ ¼ �s0; myyxðx;0Þ ¼ 0 for jxjoa. (52a,b)

Our intention now is to solve the second auxiliary problem described by the boundary conditions (49), (50) and (52).
In order to derive the integral equations for the mode I case, we define two functions that are analogous to the so-called

densities utilized in the distributed dislocation technique (e.g. Hills et al., 1996; Gourgiotis and Georgiadis, 2007, 2008). In
the present case, we are led to the introduction of these functions by considering compatibility and the kinematical
boundary condition in (50). The ‘densities’ j(x) and c(x) are defined as

jðxÞ ¼ @uyðx;0
þ
Þ=@x; cðxÞ ¼ @uxðx;0

þ
Þ=@y. (53a,b)

Of course, the latter functions are yet unknown, but we will soon formulate a system of coupled integral equations for
them. To this end, we first note that the symmetry conditions in (50) imply

jðxÞ ¼ 0; cðxÞ ¼ 0 for jxj 	 a. (54a,b)

Moreover, the following closure conditions must be satisfied:Z a

�a
jðxÞdx ¼ 0;

Z a

�a
cðxÞdx ¼ 0, (55a,b)

where the first is to be imposed due to compatibility and the second due to the symmetry of the mode I problem w.r.t. the
plane x ¼ 0 (c(x) is an odd function).

The Fourier transforms of the ‘densities’ are written in terms of the transformed displacements as

j�ðxÞ ¼ �ix u�yðx;0Þ; c�ðxÞ ¼ du�xðx;0Þ=dy, (56a,b)

where j�ðxÞ ¼ ð2pÞ�1=2 R a
�a jðtÞe

itx dt and c�ðxÞ ¼ ð2pÞ�1=2 R a
�a cðtÞ e

itx dt by virtue of (54).
Next, by using (43), (49) and (56), we write the functions Cb(x) in terms of j(x) and c(x)

C1ðxÞ ¼ �
icxðnþ cx2

Þ

ð2pÞ1=2
ð1� nÞ

Z a

�a
jðtÞ þcðtÞ
� �

eitx dt þ
i

ð2pÞ1=2x

Z a

�a
jðtÞ eitx dt, (57a)

C2ðxÞ ¼
ic sgnðxÞ

2ð2pÞ1=2
ð1� nÞ

Z a

�a
b2jðtÞ þ x2cðtÞ
h i

eitx dt, (57b)

C3ðxÞ ¼
icxðnþ cx2

Þ

ð2pÞ1=2
ð1� nÞ

Z a

�a
jðtÞ þ cðtÞ
� �

eitx dt, (57c)
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C4ðxÞ ¼ �
cbðcb2

� nÞ
ð2pÞ1=2

ð1� nÞ

Z a

�a
jðtÞ þ cðtÞ
� �

eitx dt. (57d)

Finally, replacing Cb(x) into the integral expressions for the total stress tyy and the dipolar stress myyx (i.e. into (45) and
(47)), enforcing the boundary conditions (52) and rearranging the order of integration results in a system of coupled
integral equations for the functions f(t) and c(t)

lim
y!0þ

m
2p

Z a

�a
jðtÞL1 ðx� tÞ; yð Þdt þ

Z a

�a
cðtÞL2 ðx� tÞ; yð Þdt

� �
¼ �s0 for jxjoa, (58)

lim
y!0þ

m
2p

Z a

�a
jðtÞL3 ðx� tÞ; yð Þdt þ

Z a

�a
cðtÞL4 ðx� tÞ; yð Þdt

� �
¼ 0 for jxjoa. (59)

The kernels Lb((x�t),y) (with b ¼ 1, 2, 3, 4) are defined in Appendix B. It is noted that when c-0, the above system of
integral equations degenerates into the single integral equation governing the mode I crack problem in classical elasticity.

Now, with the aid of asymptotic analysis, we split the kernels Lb((x�t),y ¼ 0+) into their singular and regular parts

L1 ðx� tÞ; y ¼ 0þ
� �

¼
cg1

ðx� tÞ3
�

g2

4ðx� tÞ
þ N1ðx� tÞ, (60a)

L2 ðx� tÞ; y ¼ 0þ
� �

¼
cg3

ðx� tÞ3
�

g3

4ðx� tÞ
þ N1ðx� tÞ, (60b)

L3 ðx� tÞ; y ¼ 0þ
� �

¼
cg3

2ðx� tÞ2
þ
g3

4
ln
jx� tj

c1=2
þ N2ðx� tÞ, (60c)

L4 ðx� tÞ; y ¼ 0þ
� �

¼
cg1

2ðx� tÞ2
þ
g3

4
ln
jx� tj

c1=2
þ N2ðx� tÞ, (60d)

where the regular kernels N1(x�t) and N2(x�t) involve modified Bessel functions of the second kind and are given in closed
form in Appendix B. The constants (g1, g2, g3) are defined in terms of the Poisson’s ratio as

g1 ¼
7� 4n
1� n

; g2 ¼
11� 4n

1� n
; g3 ¼

3� 4n
1� n

. (61)

In light of the above, the following system of hypersingular integral equations is finally obtained:

F:P:

Z 1

�1

ĉ g1ĵðt̂Þ þ g3ĉðt̂Þ
h i
ðx̂� t̂Þ3

dt̂ � C:P:V :

Z 1

�1

g2ĵðt̂Þ þ g3ĉðt̂Þ
h i

4ðx̂� t̂Þ
dt̂ þ

Z 1

�1
ĵðt̂Þ þ ĉðt̂Þ
h i


 N̂1ðax̂� at̂Þ dt̂ ¼ �
2ps0

m
for jx̂jo1,

(62)

F:P:

Z 1

�1

ĉ g3ĵðt̂Þ þ g1ĉðt̂Þ
h i

2ðx̂� t̂Þ2
dt̂ þ

Z 1

�1

g3 ĵðt̂Þ þ ĉðt̂Þ
h i

4
ln
jx̂� t̂j

ĉ
1=2

dt̂ þ

Z 1

�1
ĵðt̂Þ þ ĉðt̂Þ
h i


 N̂2ðax̂� at̂Þdt̂ ¼ 0 for jx̂jo1, (63)

where the dimensionless quantities ĵðt̂Þ ¼ jðat̂Þ, ĉðt̂Þ ¼ cðat̂Þ, x̂ ¼ x=a, t̂ ¼ t=a and ĉ
1=2
¼ c1=2=a have been used to obtain

normalization over the interval [�1,1]. In the above equations, the symbols F.P.
R

and C.P.V.
R

denote that the integrals should
be understood in the Hadamard finite-part and Cauchy principal-value sense, respectively. Some references for these types of
integrals are, e.g., Muskhelishvili (1958), Kaya and Erdogan (1987), Tsamasphyros and Dimou (1990), and Monegato (1994).
We also note that the second integral in (63) is weakly (logarithmically) singular. Although a number of formulations of
mixed boundary value problems resulting in a single hypersingular integral equation can be found in the literature (see e.g.
Kaya and Erdogan, 1987; Martin, 1991; Chan et al., 2008), we are not aware of any formulation resulting in a system of
coupled hypersingular integral equations. This reflects the complexity of the present boundary value problem.

Further, in view of the previous asymptotic results showing that the displacement components (ux,uy) behave as r3/2 (r is
the distance from the crack tip) along the crack, we write the density functions in (53) under the following forms:

ĵðt̂Þ ¼
X1
n¼0

FnUnðt̂Þð1� t̂
2
Þ
1=2; ĉ t̂

� �
¼
X1
n¼0

GnUnðt̂Þð1� t̂
2
Þ
1=2; jt̂jo1, (64a,b)

where Unðt̂Þ are the Chebyshev polynomials of the second kind (Abramowitz and Stegun, 1964).
In view of the above, the system of integral equations takes the following form:

ĉ
X1
n¼0

g1Fn þ g3Gn

� �
F:P:

Z 1

�1

Unðt̂Þð1� t̂
2
Þ
1=2

ðx̂� t̂Þ3
dt̂ �

1

4

X1
n¼0

g2Fn þ g3Gn

� �
C:P:V :

Z 1

�1

Unðt̂Þð1� t̂
2
Þ
1=2

ðx̂� t̂Þ
dt̂ þ

X1
n¼0

Fn þ Gn½ �Q ð1Þn ðx̂Þ ¼ �
2ps0

m for jx̂jo1,

(65)
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ĉ

2

X1
n¼0

g3Fn þ g1Gn

� �
F:P:

Z 1

�1

Unðt̂Þð1� t̂
2
Þ
1=2

ðx̂� t̂Þ2
dt̂ þ

g3

4

X1
n¼0

Fn þ Gn½ �

Z 1

�1
Unðt̂Þð1� t̂

2
Þ
1=2 ln

jx̂� t̂j

ĉ
1=2

dt̂ þ
X1
n¼0

Fn þ Gn½ �Q ð2Þn ðx̂Þ ¼ 0 for jx̂jo1,

(66)

where Q ðbÞn ðx̂Þ (with b ¼ 1, 2) are two regular integrals defined as

Q ðbÞn ðx̂Þ �

Z 1

�1
Unðt̂Þð1� t̂

2
Þ
1=2

 N̂bðax̂� at̂Þdt̂; b ¼ 1;2. (67)

These regular integrals can be computed with the standard Gauss–Chebyshev quadrature. Further, the singular integrals
in (65) and (66) are computed in closed form in the finite-part sense (see Appendix C). It is also noted that due to the closure
conditions in (55) the coefficients F0 and G0 in (64) are equal to zero.

In view of the above, the previous system takes the form

�
pĉ

4ð1� x̂
2
Þ

X1
n¼1

g1Fn þ g3Gn

� �
ðn2 þ nÞUnþ1ðx̂Þ � ðn

2 þ 3nþ 2ÞUn�1ðx̂Þ
� �

�
p
4

X1
n¼1

g2Fn þ g3Gn

� �
Tnþ1ðx̂Þ þ

X1
n¼1

Fn þ Gn½ �Q ð1Þn ðx̂Þ ¼ �
2ps0

m for jx̂jo1,

(68)

�
pĉ

2

X1
n¼1

g3Fn þ g1Gn

� �
ðnþ 1ÞUnðx̂Þ þ

pg3

8

X1
n¼1

Fn þ Gn½ �
Tnþ2ðx̂Þ

nþ 2
�

Tnðx̂Þ

n

� �
þ
X1
n¼1

Fn þ Gn½ �Q ð2Þn ðx̂Þ ¼ 0 for jx̂jo1, (69)

where Tnðx̂Þ are the Chebyshev polynomials of the first kind (Abramowitz and Stegun, 1964).
We solve numerically this system of functional equations using collocation points chosen as the roots of TNþ1ðx̂Þ, viz.

x̂k ¼ cos½ð2k� 1Þp=2ðN þ 1Þ� with k ¼ 1,2,y,N+1. The 2N+2 equations are solved in the least-square sense, to determine the
2N unknown coefficients Fn and Gn (with n ¼ 1,2,3,y,N) and, consequently, the functions ĵðx̂Þ and ĉðx̂Þ.

Fig. 3a depicts the variation of the crack opening displacement (appropriately normalized). It is observed that the crack
opening displacement in gradient elasticity takes on smaller values than the values according to classical elasticity. This
stiffness effect becomes more pronounced with the increase of the material length c1/2. In addition, Fig. 3b shows that the
crack faces close more smoothly (cusp-like closure) as compared to the classical result.

Next, the total stress tyy and the dipolar stress myyx will be determined ahead of the crack tips. A superposition of the
solutions of the two auxiliary problems provides

tyyðjxj4a; y ¼ 0þÞ ¼ s0 þ
mc

2p

Z a

�a

g1jðtÞ þ g3cðtÞ
� �
ðx� tÞ3

dt �
m

2p

Z a

�a

g2jðtÞ þ g3cðtÞ
� �

4ðx� tÞ
dt

þ
m

2p

Z a

�a
½jðtÞ þ cðtÞ� 
 N1ðx� tÞ dt, (70)

myyxðjxj4a; y ¼ 0þÞ ¼
mc

2p

Z a

�a

g3jðtÞ þ g1cðtÞ
� �

2ðx� tÞ2
dt þ

mg3

2p

Z a

�1

jðtÞ þ cðtÞ
� �

4

 ln
jx� tj

c1=2
dt

þ
m

2p

Z a

�a
½jðtÞ þ cðtÞ� 
 N2ðx� tÞdt; (71)

where it is noted that the first two integrals in each of the above equations are not singular since |x|4a now. Due to the
symmetry of the problem with respect to y-axis, we confine attention only to the right crack tip. In order to evaluate the
stresses, we utilize the results quoted in Appendix C (Eqs. (C5)–(C8)) for integrals involving Chebyshev polynomials.
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Fig. 3. Profiles of the normalized crack opening displacement ðmuþy =as0Þ of the upper face (a) along the entire crack line, and (b) near to the RHS crack tip.

Poisson’s ratio is n ¼ 0.3.
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Fig. 4 depicts the distribution of the normal total stress ahead of the RHS crack tip for two different values of the ratio
a/c1/2. Normalized quantities are utilized and the new variable x̄ ¼ x� a is introduced measuring distance from the RHS
crack tip. The corresponding asymptotic fields in Section 4 and the classical solution are also shown in Fig. 4. It is can
readily be shown from (70) that, as x-a+ (x̂-1+), the total stress tyy exhibits a singularity of the type x̄�3=2. This is in accord
with our previous asymptotic result. Our results show that the asymptotic field is a good approximation of the full-field
solution only within a distance from the crack-tip of 0.2c1/2 for a/c1/2

¼ 5, and 0.1c1/2 for a/c1/2
¼ 500. In the range shown in

Fig. 4, the asymptotic total stress departs appreciably from the full-field solution. The behavior of tyy reminds typical
boundary-layer behavior as, e.g., that observed for the surface pressure near the leading edge of a Joukowski airfoil
(van Dyke, 1964). We notice that for an initial zone in the crack-tip region the total normal stress tyy takes on negative
values exhibiting therefore a cohesive-traction character. This zone ranges from 0.45c1/2 to 0.5c1/2. Since c is of the order of
(0.1h)2, where 2h is the size of the unit cell, this zone is actually extremely small and perhaps can be ignored. This behavior
was also observed before by Shi et al. (2000), Georgiadis (2003), and Wei (2006). Also, for aZ5c1/2, tyy exhibits a bounded
maximum, whereas, for a/c1/2o5, no local maximum appears and the total stress tends asymptotically to the limit of
classical elasticity. We note, in addition, that at points lying outside the domain where the effects of microstructure are
pronounced (roughly for x̄48c1=2), tyy tends to the stress distribution given by the classical elasticity solution. Generally,
the variation of the Poisson’s ratio n has marginal effect on the total normal stress.

Further, from (71), we infer that the dipolar stress myyx behaves as x̄�1=2 in the vicinity of the crack tip. Again, this is in
accord with the respective asymptotic result of Section 4. Fig. 5 depicts the distribution of the dipolar stress ahead of the
RHS crack tip. It is observed that the gradient effects are significant for x̄o8c1=2, whereas, outside this zone, they gradually
diminish to zero.

Finally, based on our previous analysis, we evaluate the normal strain eyy and the shear strain eyx along the crack line
y ¼ 0+. In Fig. 6a the variation of the strain eyy is depicted. It is observed that the normal strain takes a finite value at the
crack-tip ðx̂ ¼ 1Þ, while the corresponding strain in classical elasticity exhibits a square root singularity. Also, it is shown
that the effects of microstructure are more pronounced in the zone jx̄jo5c1=2 (i.e. 0:9ox̂o1:1 in Fig. 6a), whereas outside
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this zone the distribution of the normal strain tends continuously to its classical counterpart. In Fig. 6b the distribution of
the shear strain eyx is displayed. Contrary to the classical elasticity case, the shear strain eyx is not zero at the crack-faces.
Also, it is noted that as the ratio a/c1/2 increases, the shear strain distribution converges pointwise to the classical solution.

5.2. Mode II crack

The problem of a mode II crack of length 2a (Fig. 7) is considered next. The crack faces are traction free and the body is
considered to be in plane-strain conditions.

The following mixed boundary conditions hold for the upper half-plane (yZ0)

tyxðx;0Þ ¼ 0; myyyðx;0Þ ¼ 0 for jxjoa, (72a,b)

tyyðx;0Þ ¼ 0; myyxðx;0Þ ¼ 0 for �1oxo1, (73a,b)

uxðx;0Þ ¼ 0; Duyðx;0Þ � @yuyðx;0Þ ¼ 0 for jxj4a, (74a,b)

whereas the regularity conditions at infinity are

t1yx ! t0; t1yy; t
1
xx ! 0; m1rpq ! 0ðr; p; q ¼ x; yÞ as R!1. (75)

We note that the boundary conditions (73) are valid on the whole crack-line due to the antisymmetry of the mode II
problem (cf. the asymptotic relations (37b) and (38b)).

Since the procedure for the mode II problem is strictly analogous to that employed previously in the mode I case, we
omit the details of the analysis and cite directly the results. The coupled system of hypersingular integral equations for the
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mode II case is obtained as

F:P:

Z 1

�1

ĉ k1ẑðt̂Þ � k3Ẑðt̂Þ
h i
ðx̂� t̂Þ3

dt̂ þ C:P:V :

Z 1

�1

k3Ẑðt̂Þ � k2ẑðt̂Þ
4ðx̂� t̂Þ

dt̂ þ

Z 1

�1
ẑðt̂Þ 
 M̂1ðax̂� at̂Þ þ Ẑðt̂Þ 
 M̂2ðax̂� at̂Þ
h i

dt̂ ¼ �
2pt0

m for jx̂jo1,

(76)

F:P:

Z 1

�1

ĉ k1Ẑðt̂Þ � k3ẑðt̂Þ
h i

2ðx̂� t̂Þ2
dt̂ þ

Z 1

�1

k4Ẑðt̂Þ � k3ẑðt̂Þ
4

ln
jx̂� t̂j

ĉ
1=2

dt̂ þ

Z 1

�1
ẑðt̂Þ 
 M̂3ðax̂� at̂Þ þ Ẑðt̂Þ 
 M̂4ðax̂� at̂Þ
h i

dt̂ ¼ 0 for jx̂jo1,

(77)

where the unknown ‘density’ functions are defined as

zðxÞ ¼ @uxðx;0
þ
Þ=@x; ZðxÞ ¼ @uyðx;0

þ
Þ=@y (78)

and satisfy the same symmetry and closure conditions as in (54) and (55). The regular kernels Mb(x�t) (with b ¼ 1, 2, 3, 4)
involve modified Bessel functions of the second kind and are given in closed form in Appendix B. Further, the constants kb

(with b ¼ 1, 2, 3, 4) are given as

k1 ¼
8n2 � 18nþ 9

ð1� nÞð1� 2nÞ ; k2 ¼
8n2 � 22nþ 11

ð1� nÞð1� 2nÞ ; k3 ¼
8n2 � 10nþ 1

ð1� nÞð1� 2nÞ ; k4 ¼
8n2 � 14nþ 7

ð1� nÞð1� 2nÞ . (79)

The above system is solved numerically using the same collocation scheme as in the mode I case. In Fig. 8, the variation of
the tangential displacement along the crack-faces is depicted. Again, a cusp-like closure of the crack faces is observed.
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The variation of the total shear stress tyx ahead of the crack tip is displayed in Fig. 9. The corresponding asymptotic fields
in Section 4 and the classical solution are also shown in Fig. 9. It is observed that the dependence on Poisson’s ratio of the
total stress is stronger than in the mode I case. This dependence becomes more pronounced as the ratio a/c1/2 increases.
Also, the cohesive zone in the mode II case appears slightly larger than in mode I ranging from 0.56c1/2 (for a/c1/2

¼ 5) to
0.77c1/2 (for a/c1/2

¼ 500).

6. Evaluation of the J-integral

In this section, we evaluate the J-integral of fracture mechanics in the mode I case and examine its dependence upon the
ratio of lengths c1/2/a and Poisson’s ratio n. In the works by Georgiadis and Grentzelou (2006) and Grentzelou and
Georgiadis (2008), the expression given below for the J-integral was identified with the energy release rate at the crack tip in
gradient elasticity and it was proved also that J is path-independent in the case of a quasi-static response and a
homogeneous and isotropic material. The J-integral is defined in our case as

J ¼

Z
G

Wnx � PðnÞq

@uq

@x
� RðnÞq D

@uq

@x

	 
� �
dG ¼

Z
G

W dy� PðnÞq

@uq

@x
þ RðnÞq D

@uq

@x

	 
� �
dG

	 

, (80)

where G is a piecewise, smooth, simple, two-dimensional contour in the (x,y)-plane surrounding the crack-tip. Also, n is the
outward unit vector normal to G, W is the strain-energy density, uq is the displacement vector, and (Pq

(n),Rq
(n)) are the

auxiliary monopolar and dipolar tractions defined in Section 2.
For the evaluation of the J-integral, we consider as contour G a rectangular-shaped (surrounding the RHS crack-tip) with

vanishing ‘height’ along the y-direction and with e-+0 (see Fig. 10). Such a contour was first introduced by Freund (1972)
in examining the energy flux into the tip of a rapidly extending crack and it was proved particularly convenient in
computing energy quantities in the vicinity of crack tips (see e.g. Burridge, 1976; Georgiadis, 2003; Gourgiotis and
Georgiadis, 2008). In fact, this type of contour permits using solely the asymptotic near-tip stress and displacement fields. It
is noted that upon this choice of contour, the integral

R
GW dy in (80) becomes zero if we allow the ‘height’ of the rectangle

to vanish. In this way, the expression for the J-integral becomes

J ¼ �2 lim
�!þ0

Z aþ�

a��
PðnÞq

@uq

@x
þ RðnÞq D

@uq

@x

	 
	 

dx

� �
. (81)

For the mode I case, we take into account that the total shear stress tyx and the dipolar stress myyy are zero along the crack
line (y ¼ 0+) and the crack-faces are defined by n ¼ (0,71). Then, the J-integral assumes the following form:

J ¼ �2 lim
�!þ0

Z aþ�

a��
tyyðx; y ¼ 0þÞ

@uyðx; y ¼ 0þÞ

@x
þmyyxðx; y ¼ 0þÞ

@2uxðx; y ¼ 0þÞ

@x @y

 !
dx

( )
. (82)

The dominant singular behavior (in the vicinity of the crack-tip) of the normal total stress tyy is due to the hypersingular
integral with the cubic singularity in (70), whereas for the dipolar stress myyx is due to the hypersingular integral with the
square-type singularity in (71). These stresses are written as (see also Appendix C)

tyyðx! aþ; y ¼ 0þÞ ¼ lim
x!aþ

mc

2p

Z a

�a

g1jðtÞ þ g3cðtÞ
� �
ðx� tÞ3

dt ¼
21=2mĉ

16

XN

n¼1

g1Fn þ g3Gn

� �
ðnþ 1Þðx̂� 1Þ�3=2 for x̂41, (83)

myyxðx! aþ; y ¼ 0þÞ ¼ lim
x!aþ

mc

2p

Z a

�a

g3jðtÞ þ g1cðtÞ
� �

2ðx� tÞ2
dt ¼ a

21=2mĉ

8

XN

n¼1

g3Fn þ g1Gn

� �
ðnþ 1Þðx̂� 1Þ�1=2 for x̂41. (84)

Also, in view of the forms for ĵðt̂Þ and ĉðt̂Þ in (64), the following asymptotic results are established for x̂! 1�:

@uy x! a�; y ¼ 0þ
� �

@x
¼ lim

x̂!1�

XN

n¼1

FnUnðx̂Þ 
 ð1� x̂
2
Þ
1=2
¼ 21=2

XN

n¼1

Fnðnþ 1Þ 
 ð1� x̂Þ1=2 for x̂o1, (85)

@2ux x! a�; y ¼ 0þ
� �

@x @y
¼ lim

x̂!1�

1

a

@

@x̂

XN

n¼1

GnUnðx̂Þð1� x̂
2
Þ
1=2

" #
¼ �

1

21=2a

XN

n¼1

Gnðnþ 1Þð1� x̂Þ�1=2 for x̂o1. (86)
Fig. 10. Rectangular-shaped contour surrounding the RHS crack-tip.
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Then, the above results allow us to write the J-integral under the form

J ¼ �a
mĉ

4
lim
�!0

L1

Z ð�=aÞ

�ð�=aÞ
ðxþÞ

�3=2 x�ð Þ
1=2 dx̄�L2

Z ð�=aÞ

�ð�=aÞ
ðxþÞ

�1=2
ðx�Þ

�1=2 dx̄

" #
¼ a

pmĉ

8
L1 þL2½ �, (87)

where

L1 ¼
XN

n¼1

ð1þ nÞ g1Fn þ g3Gn

� �XN

n¼1

ð1þ nÞFn; L2 ¼
XN

n¼1

ð1þ nÞðg3Fn þ g1GnÞ
XN

n¼1

ð1þ nÞGn. (88)

Also, x̄ ¼ x̂� 1 and, for any real l with the exception of l ¼ �1, �2, �3,y, the following definitions of the distributions
(of the bisection type) xlþ and xl� are employed (see e.g. Gelfand and Shilov, 1964):

xlþ ¼
jx̄jl for x̄40

0 for x̄o0

(
and xl� ¼

0 for x̄40;

jx̄jl for x̄o0:

(
(89)

It is further noted that the product of distributions inside the integrals in (87) is obtained here by the use of Fisher’s
theorem (Fisher, 1971), i.e. the operational relation ðxþÞ

�1�l
ðx�Þ

l
¼ �pdðx̄Þ 2 sinðplÞ

� ��1
with (la�1, �2, �3,y) and dðx̄Þ

being the Dirac delta distribution. Use is also made of the fundamental property of the Dirac delta distribution thatR �
�� dðx̄Þdx̄ ¼ 1.

Our results are shown in the graph of Fig. 11. The graph depicts the dependence of the ratio J/Jclas. upon the ratio of
lengths c1/2/a for three different values of Poisson’s ratio of the material. Jclas:

� pð1� n2Þs2
0a=E is the respective value

within the classical linear elastic fracture mechanics (see e.g. Rice, 1968). Our results show that as c1/2/a-0, the J-integral
in dipolar gradient elasticity tends continuously to its counterpart in classical elasticity. For c1/2a0, a decrease of the values
of J is noticed in comparison with the classical theory and this indicates that the rigidity effect dominates over the stress
aggravation effect in the energy release rate. The ratio J/Jclas. decreases monotonically with increasing values of c1/2/a. This
finding shows that the gradient theory predicts a strengthening effect since a reduction of the crack driving force takes
place as the material microstructure becomes more pronounced.

7. Conclusions

The present work is concerned with the full-field solutions of plane-strain problems of finite-length cracks in the
framework of gradient elasticity. Form II of Mindlin’s (1964) theory is employed with one characteristic length. The
boundary value problems are attacked initially by the asymptotic Knein–Williams technique and then by an analytical/
numerical technique based on hypersingular integral equations.

Our results show significant departure from the predictions of classical fracture mechanics. In particular, we found that
a cracked solid governed by gradient elasticity behaves in a more rigid way (having increased stiffness) as compared to a
solid governed by classical elasticity. Indeed, the crack-face displacements exhibit a cusp-like closure and the strain field is
bounded at the crack-tip vicinity. On the other hand, the total stress ahead of the crack tip exhibits a typical boundary-layer
behavior with an initial very small area, adjacent to the crack tip, of cohesive tractions, the tractions then taking on positive
values and reaching a bounded maximum. The length of the cohesive-traction area is extremely small. In addition, the J-
integral in gradient elasticity tends continuously to its counterpart in classical elasticity as c1/2/a-0, where c1/2 is the
material length and a is the half of the crack length. For c1/2a0, a decrease of its value is noticed in comparison with the
classical theory and this indicates that the rigidity effect dominates over the stress aggravation effect in the energy release
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rate. The ratio J/Jclas., where Jclas. is the expression of the J-integral in classical elastic fracture mechanics, decreases
monotonically with increasing values of c1/2/a. This finding shows that the gradient theory predicts a strengthening effect
since a reduction of the crack driving force takes place as the material microstructure becomes more pronounced.
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Appendix A

In this appendix, we derive the total stresses and the equilibrium equations in polar coordinates.
The boundary condition (6) can be written in direct form as

PðnÞ ¼ n 
 ðs�r 
mÞ � r
s


ðn 
mÞ þ ðr
s


nÞðnn : mÞ, (A1)

where r
s

¼ ðI� nnÞ 
 r is the surface gradient operator, I is the unit dyadic and r is the usual gradient operator defined
through the relation rð Þ ¼ er@rð Þ þ eyr�1@yð Þ in polar coordinates. In our case, where n ¼ ey, the surface gradient
operator takes the form r

s

ð Þ ¼ er@rð Þ.
Further, the monopolar and dipolar stress tensors in the case of plane strain are written as

s ¼ srrer � er þ tyrey � er þ tryer � ey þ tyyey � ey þ tzzez � ez, (A2)

m ¼ mrrrer � er � er þmryrer � ey � er þmrryer � er � ey þmryyer � ey � eh

þmyyyey � ey � ey þmyrrey � er � er þmyryey � er � ey þmyyrey � ey � er

þmyzzey � ez � ez þmzrzez � er � ez þmrzzer � ez � ez þmzzrez � ez � er

þmzyzez � ey � ez þmzzyez � ez � ey. (A3)

Also, taking into account that the base vectors are related through the differential relations @yer ¼ ey, @yey ¼ �er, @rer ¼ 0,
@rey ¼ 0, we obtain

n 
m ¼ myrrer � er þmyryer � ey þmyyrey � er þmyyyey � eh þmyzzez � ez, (A4)

n 
 ðr 
mÞ ¼ @rmryr þ
1

r
@ymyyr þ

1

r
myrr �

1

r
myyy þ

1

r
mryr

� �
er

þ @rmryy þ
1

r
@ymyyy þ

1

r
mryy þ

1

r
myry þ

1

r
myyr

� �
ey, (A5)

r
s


ðn 
mÞ ¼ @rmyrrer þ @rmyryey, (A6)

r
s


n ¼ 0. (A7)

In view of the above, we are able to write for the total stresses Eqs. (17) and (18) of the main text.
Now as for the equations of equilibrium in terms of displacements, these are written in direct form as

ð1� cr2
Þ ð1� 2nÞr2uþrðr 
 uÞ
h i

¼ 0. (A8)

In polar coordinates, (A8) becomes

ð1� cr2
Þ srer þ syey½ � ¼ 0) sr � c½r2sr � r�2sr � 2r�2@ysy�

h i
er þ sy � c½r2sy � r�2sy þ 2r�2@ysr �

h i
ey ¼ 0, (A9)

with sr and sy being given in Eqs. (21) of the main text. Then, from (A9) one readily obtains Eqs. (20) in the main body of the
paper.
Appendix B

In this appendix, the kernels of the integral equations are derived in closed form.
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B.1. Mode I case

The kernels Lb((x�t),y) (with b ¼ 1, 2, 3, 4) are defined as follows:

Lbððx� tÞ; yÞ ¼

Z 1
�1

kbðx; yÞ e�ixðx�tÞ dx, (B1)

where

k1ðx; yÞ ¼
ic2b4sgnðxÞð2cx2

� 1� yjxjÞ
1� n

e� xj jy � icbx 1þ
2ðcbxÞ2

1� n

" #
e�yb, (B2)

k2ðx; yÞ ¼
ic2b2

ð1þ 2cx2
� yjxjÞxjxj

1� n
e�jxjy � icbx 1þ

2ðcbxÞ2

1� n

" #
e�yb, (B3)

k3ðx; yÞ ¼
c2b2
jxjð1þ 2cx2

� yjxjÞ
1� n

e�jxjy � cb 1þ
2ðcbxÞ2

1� n

" #
e�yb, (B4)

k4ðx; yÞ ¼
c2x2
jxjð3þ 2cx2

� yjxjÞ
1� n

e�yjxj � cb 1þ
2ðcbxÞ2

1� n

" #
e�yb. (B5)

The above expressions are useful for the derivation of the field quantities away from the crack-axis (i.e. for ya0). The
kernels Lb((x�t),y) are given in the thesis by Gourgiotis (2009).

With the aid of asymptotic analysis, the regular parts of the kernels Lb((x�t),y ¼ 0+) are given as

N1ðrÞ ¼ �
2

ð1� nÞ
1440c3

r7
�

72c2

r5
þ
ð7� 4nÞc

2r3
�

3� 4n
8r

�
�
ð1� nÞK2ðjrj=c1=2Þ

r

�
1

r K4ðjrj=c1=2Þ 1þ
30c

r2

	 

� K2ðjrj=c1=2Þ

� ��
, (B6)

N2ðrÞ ¼ �
2

ð1� nÞ
240c3

r6
�

18c2

r4
þ
ð7� 4nÞc

4r2

�
þ

3� 4n
8

lnðjrj=c1=2Þ

�
1

16
2K0ðjrj=c1=2Þ � K2ðjrj=c1=2Þ � 2K4ðjrj=c1=2Þ þ K6ðjrj=c1=2Þ

h i
�

1� nð Þ

2
K2ðjrj=c1=2Þ � K0ðjrj=c1=2Þ

h i�
, (B7)

where r ¼ x�t and Ki(R/c1/2) is the ith order modified Bessel function of the second kind.
Further, to show that the kernels Nb(r) (with b ¼ 1, 2) are regular, we expand the latter in series as r-0 (with the aid of

the symbolic program MAPLE)

lim
r!0

NbðrÞ ¼ ða1 þ a2 lnjrjÞrþ Oðr3 lnjrjÞ, (B8)

where ab (with b ¼ 1, 2) are constants. Now, since limr!0 rn ln jrj ¼ 0 for n40, it is concluded that the above kernels are
regular.
B.2. Mode II case

The regular kernels Mb(r) (with b ¼ 1, 2, 3, 4) in (76) and (77) are given as

M1ðrÞ ¼
4

ð1� nÞ
720c3

r7
�

60c2

r5
�

cð8n2 þ 14n� 7Þ

4ð1� 2nÞr3
þ
ð8n2 � 6nþ 3Þ

16ð1� 2nÞr

�

� K2ðjrj=c1=2Þ
360c2

r5
þ

60c

r3
�
ð1� nÞ2

ð1� 2nÞr

" #
þ

45c

r3
K0ðjrj=c1=2Þ

)
, (B9)

M2ðrÞ ¼ �
4

ð1� nÞ
720c3

r7
�

36c2

r5
�

cð8n2 � 2n� 3Þ

4ð1� 2nÞr3
þ
ð8n2 � 10nþ 1Þ

16ð1� 2nÞr

�
þ 3K0 r

�� ��.c1=2
 � 15c

r3
þ

1

2r

� �

� 3K2ðjrj=c1=2Þ
120c2

r5
þ

24c

r3
�

2n2 þ 4n� 3

6ð1� 2nÞr

� ��
, (B10)
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M3ðrÞ ¼ �
4

ð1� nÞ
120c3

r6
�

9c2

r4
�

cð8n2 � 2n� 3Þ

8ð1� 2nÞr2

�
�
ð8n2 � 10nþ 1Þ

16ð1� 2nÞ lnðjrj=c1=2Þ

� K2ðjrj=c1=2Þ
60c2

r4
þ

21c

2r2
þ

nð1� nÞ
2ð1� 2nÞ

� �
þ K0ðjrj=c1=2Þ

15c

2r2
þ

nð1� nÞ
2ð1� 2nÞ

� ��
, (B11)

M4ðrÞ ¼
4

ð1� nÞ
120c3

r6
�

3c2

r4
�

cð8n2 � 18nþ 9Þ

8ð1� 2nÞr2

�
�
ð8n2 � 14nþ 7Þ

16ð1� 2nÞ
lnðjrj=c1=2Þ

�K2ðjrj=c1=2Þ
60c2

r4
þ

27c

2r2
�

n2

2ð1� 2nÞ

� �
þ K0ðjrj=c1=2Þ

15c

2r2
�

n2

2ð1� 2nÞ

� ��
. (B12)

Appendix C

In the main body of the paper, we have utilized closed-form expressions for several integrals involving Chebyshev
polynomials. In this appendix, we present these expressions.

In the case |x|o1, the following integrals are singular or hypersingular. They are evaluated as

Z 1

�1
UnðtÞð1� t2Þ

1=2 lnjx� tjdt ¼

p
4

T2ðxÞ �
p
2

ln2; n ¼ 0;

p
2

Tnþ2ðxÞ

nþ 2
�

TnðxÞ

n

	 

; n 	 1;

8>><
>>: (C1)

C:P:V:

Z 1

�1

UnðtÞð1� t2Þ
1=2

x� t
dt ¼ pTnþ1ðxÞ; n 	 0, (C2)

F:P:

Z 1

�1

UnðtÞð1� t2Þ
1=2

ðx� tÞ2
dt ¼ �pðnþ 1ÞUnðxÞ; n 	 0, (C3)

F:P:

Z 1

�1

UnðtÞð1� t2Þ
1=2

ðx� tÞ3
dt ¼

0; n ¼ 0;

�
p

4ð1� x2Þ
½ðn2 þ nÞUnþ1ðxÞ � ðn

2 þ 3nþ 2ÞUn�1ðxÞ�; n 	 1:

8<
: (C4)

The integrals (C2)–(C4) can be found in the works of Kaya and Erdogan (1987) and Chan et al. (2003).
In the case |x|41, the following integrals are regular. They are evaluated as

Z 1

�1
UnðtÞð1� t2Þ

1=2 lnjx� tjdt ¼

p
2

x2 � jxjðx2 � 1Þ1=2
þ ln jxj þ ðx2 � 1Þ1=2

 �
� ln 2�

1

2

	 

; n ¼ 0;

�
p
2

x�n 1þ
x2 � 1
� �1=2

jxj

 !�n

1

n
�

1

nþ 2ð Þx2
1þ
ðx2 � 1Þ1=2

jxj

 !�2
2
4

3
5; n 	 1;

8>>>>><
>>>>>:

(C5)

Z 1

�1

UnðtÞð1� t2Þ
1=2

x� t
dt ¼ pðx� sgnðxÞðx2 � 1Þ1=2

Þ
nþ1; n 	 0, (C6)

Z 1

�1

UnðtÞð1� t2Þ
1=2

ðx� tÞ2
dt ¼ �p nþ 1ð Þ 1�

jxj

ðx2 � 1Þ1=2

 !
ðx� sgnðxÞðx2 � 1Þ1=2

Þ
n; n 	 0, (C7)

Z 1

�1

UnðtÞð1� t2Þ
1=2

ðx� tÞ3
dt ¼

p
2
ðnþ 1Þðx� sgnðxÞðx2 � 1Þ1=2

Þ
n�1 n 1�

jxj

ðx2 � 1Þ1=2

 !2
2
4 þ

jxj � ðx2 � 1Þ1=2

ðx2 � 1Þ3=2

#
; n 	 0. (C8)
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