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Insights Into Flexoelectric Solids
From Strain-Gradient Elasticity
A material is said to be flexoelectric when it polarizes in response to strain gradients.
The phenomenon is well known in liquid crystals and biomembranes but has received less
attention in hard materials such as ceramics. Here we derive the governing equations for
a flexoelectric solid under small deformation. We assume a linear constitutive relation
and use it to prove a reciprocal theorem for flexoelectric materials as well as to obtain a
higher-order Navier equation in the isotropic case. The Navier equation is similar to that
in Mindlin’s theory of strain-gradient elasticity. We also provide analytical solutions
to several boundary value problems. We predict size-dependent electromechanical
properties and flexoelectric modulation of material behavior. Our results can be used
to interpret experiments on flexoelectric materials which are becoming increasingly
sophisticated due to the advent of nanoscale probes. [DOI: 10.1115/1.4027451]

1 Introduction

Coupled electromechanical phenomena are common in nature.
For example, strains can be generated in dielectrics by the appli-
cation of electric fields through electrostriction. Strains can also
be generated in a special class of dielectrics by the phenomenon
of piezoelectricity. Conversely, a piezoelectric material can be
polarized when a stress is applied on it. The study of these phe-
nomena has a long history in mechanics of materials and has been
documented in quite a number of texts, including those of Landau
et al. [1], Maugin and Eringen [2], Kovetz [3], and many others.

A lesser known phenomenon, termed flexoelectricity, is the
coupling between polarization and strain gradient (SG). It was
extensively studied in liquid crystals starting from the 1960s [4,5]
and has been extended recently to lipid bilayer membranes [6–9].
During this period, it was known that a coupling between polar-
ization and strain gradient exists also in hard materials, even those
with centrosymmetric lattices [10–13]. But, unlike soft materials
(like liquid crystals and biomembranes), it has been difficult to
measure flexoelectric constants in hard materials because very
large strain gradients are required to produce measurable effects
in macroscopic specimens. In the last decade, this problem has
been circumvented by studying thin films of ceramic materials
and using nanoscale probes to measure polarizations and strains.
As a result, there has been a revival of interest in flexoelectricity.
Flexoelectric constants have been directly measured in several
materials with high dielectric susceptibility [14–17]. It has been
suggested that flexoelectricity in nanoscale thin films leads to an
enhanced piezoelectric response [18,19]. As noted in Ref. [20],
“flexoelectricity is not just a substitute for piezoelectricity at the
nanoscale; it also enables additional electromechanical functional-
ities not available otherwise.” For example, the flexoelectric effect
is implicated in polarization rotations in ferroelectrics [21] and
size-dependent material properties [22–26] in some ceramics.
Here, we show how stress concentration factors (SCF) in flexo-
electric solids can be modulated by applied electric fields.

Early theoretical treatment of flexoelectricity focused primarily
on its microscopic origins. A rigid-ion model was proposed
by Tagantsev [27] and was recently developed by Ref. [28]. In
this model, flexoelectricity arises as a result of broken lattice
symmetry. Later, the study of graphene [29] showed that electron
redistribution is also an important source of flexoelectricity. The
electronic contribution to flexoelectricity was studied in detail by

Ref. [30,31] and Ref. [32] attempted a first-principles calculation
of flexoelectric constants of BaTiO3. These and other topics have
been discussed in a review [33] where we have shed light on the
developments in the field over the last few decades.

Despite these developments, there are only a few papers in
which a continuum-based framework for flexoelectricity is uti-
lized to solve boundary value problems (BVPs). One such paper is
that of Majdoub et al. [22,23] who studied a flexoelectric cantile-
ver beam, accounting for both piezoelectric and flexoelectric
effects. They showed that the piezoelectric effect in BaTiO3 is
enhanced due to flexoelectricity and verified the predictions of
their continuum model by performing molecular simulations.
Recently, [34] generalized their results to clamped–clamped and
simply supported beams. In these papers, the contribution of flex-
oelectricity is summarized by a single constant. While this is suffi-
cient for a one-dimensional beam problem, these solutions can
only provide limited information about the full fourth-order flexo-
electric tensor. For this reason, we need to analyze flexoelectric
boundary value problems in two and three dimensions.

In general, electromechanical problems can be solved by com-
bining the governing equations of electrostatics and continuum
mechanics [3,35]. As a special case, linear elasticity and electro-
statics suffice to solve boundary value problems for piezoelectric
solids. However, flexoelectricity involves strain gradients, so we
need to invoke theories of strain-gradient elasticity (SGE). The
field of SGE was developed mainly by Toupin [36], Koiter [37],
and Mindlin [38–40] to understand size-dependent phenomena in
solids and has led to a number of “nonlocal” theories of elasticity
and plasticity [41–44]. In these theories, the energy density
depends both on the strain and its gradient, so in addition to the
usual elastic constants, several material length scales enter into
the constitutive laws. A common feature of all these theories is
the nonsymmetry of the true stress tensor, and the existence of
couple and higher-order stresses. In each theory, the higher-order
stresses depend on different components of the double displace-
ment gradient [45,46]. This variation is also apparent in the litera-
ture on flexoelectricity [17,22,23,27,47]. Here, we adopt a widely
studied SGE model for isotropic materials [48] which is based on
the general strain-gradient tensor.

In the sequel, we first combine a theory of SGE and classical
electrostatics to derive the governing equations and boundary con-
ditions (BCs) for general flexoelectric dielectrics. Second, we pro-
pose a linear constitutive law and prove a reciprocal theorem.
Third, we restrict ourselves to the study of isotropic materials and
derive the governing Navier equation for the problem. Last, we
use this machinery to solve a few BVPs, including beam bending
and axisymmetric plane problems. Our solutions can be used to
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interpret experiments on flexoelectric solids and can also provide
a benchmark for verifying continuum-based computational meth-
ods for solving flexoelectric boundary value problems.

2 Governing Equations

Consider an elastic dielectric body occupying region V with a
boundary @V in three-dimensional space. Without loss of general-
ity, we will develop our theory in a Cartesian coordinate system
with orthonormal basis fe1; e2; e3g and respective coordinates
fx1; x2; x3g. The displacement field in the body is uðx1; x2; x3Þ.
The infinitesimal strain tensor is defined as

Sij ¼
1

2
ðui;j þ uj;iÞ (1)

Here, we use the notation ai to denote the ith component of vector
a. ai,j (same as @jai) is a shorthand of @ai/@xj. The same rules
apply to second and higher-order tensors. Hence, we write the
strain gradients as Sjk,i. We give only a concise summary of
the governing equations since these can be found elsewhere
[38,43,44,48,49]. The work conjugate of the strain Sij is the stress
Tij. Similarly, the work conjugate of the strain gradient Sjk,i is the
third-order stress T̂ijk. Consequently, there is an additional term in
the equilibrium equation

Tjk;j � T̂ijk;ij þ bk ¼ 0 (2)

where bk is the body force.
According to classical electrostatics, in a dielectric there are

three relevant fields—the electric field Ei, the electric displace-
ment Di and the polarization field Pi. These three quantities are
related to each other through

Di ¼ e0Ei þ Pi (3)

where e0 is the permittivity of vacuum. The electric field is the
negative gradient of a scalar potential u, so that Ei ¼ �u;i. In a
dielectric body, there is no free charge, so from the Maxwell
equations

Di;i ¼ �e0u;ii þ Pi;i ¼ 0 (4)

This equation, along with Eq. (2) constitutes the governing
equation of a general dielectric with SG effects, under small
deformations. These governing equations admit six types of BCs
as follows:

(1) displacement boundary condition

ui ¼ eui; on @Vu (5)

(2) normal derivative boundary condition

ui;jnj ¼ ~v on @Vv (6)

(3) traction boundary condition

njðTjk � T̂ijk;iÞ � Dn
j niT̂ijk � ðDn

pnpÞninjT̂ijk ¼ ~tk; on @Vt

(7)

(4) higher-order traction boundary condition

ninjT̂ijk ¼ ~rk on @Vr (8)

(5) potential boundary condition

u ¼ ~u on @Vu (9)

(6) surface charge boundary condition

niDi ¼ � ~x on @VD (10)

In the above ni is the unit normal, ~v means that v is prescribed (so
also for the other prescribed quantities ~r; ~u, etc.), and
Dn

j ¼ @j � njnk@k is the surface gradient operator. For the BVP to
be well posed we require @Vu [ @VD ¼ @Vu [ @Vt ¼ @Vv [ @Vr

¼ @V and @Vu \ @VD ¼ @Vu \ @Vt ¼ @Vv \ @Vr ¼ ;.

3 Constitutive Laws and a Reciprocal Theorem

So far, we have given the governing equations for a linear elec-
tromechanical theory of dielectrics with SG effects. For such a
material, the stored energy density W is of the form

WðSij; Sjk;i;DiÞ ¼ WLðSij; Sjk;i;PiÞ þ
1

2
e0EiEi (11)

Following Toupin [50], we will work with WL. Flexoelectric
materials, as concerned now, are in the class in which WL is
quadratic

WLðSij; Sjk;i;PiÞ ¼
1

2
cijklSijSkl þ

1

2
aijPiPj þ dijkSijPi þ fijklSjk;iPl

þ 1

2
hijklmnSjk;iSmn;l (12)

where cijkl is the elasticity tensor, dijk is the piezoelectric tensor,
fijkl is the flexoelectric tensor, aij is the reciprocal susceptibility
tensor and hijklmn is the strain-gradient elasticity tensor. By use of
Toupin’s variational principles [50], we obtain the constitutive
laws for a flexoelectric material

@WL

@Sij
¼ Tij ¼ cijklSkl þ dijkPk (13)

@WL

@Sjk;i
¼ T̂ijk ¼ fijklPl þ hijklmnSmn;l (14)

@WL

@Pl
¼ El ¼ aljPj þ dijlSij þ fijklSkj;i (15)

Using the governing equations and the linear constitutive rela-
tions above, we prove a reciprocal theorem as follows. Consider
the solutions to two different problems, the original problem
(problem 1) and the reciprocal problem (problem 2) which we dif-
ferentiate by upper indices 1 and 2. The total work done by the
original quantities through their reciprocal conjugates is

Wð12Þ ¼
ð

V

T
ð1Þ
ij S

ð2Þ
ij þ T̂

ð1Þ
ijk S

ð2Þ
jk;i þ E

ð1Þ
i D

ð2Þ
i

h i
dv (16)

Wð21Þ, which is the work done by the reciprocal quantities through
their original conjugates can be defined in a similar manner.
Applying integration by parts and using the boundary conditions,
we obtain

Wð12Þ ¼
ð

V

½�ðTð1Þjk � T̂
ð1Þ
ijk;iÞ;ju

ð2Þ
k þ uð1ÞDð2Þi;i �dv

þ
ð
@V

½tð1Þi u
ð2Þ
i þ r

ð1Þ
i v

ð2Þ
i þ uð1Þxð2Þ�ds (17)
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Plugging in the governing Eqs. (2) and (4), we get

Wð12Þ ¼
ð

V

½bð1Þk u
ð2Þ
k �dvþ

ð
@V

½tð1Þi u
ð2Þ
i þ r

ð1Þ
i v

ð2Þ
i þ uð1Þxð2Þ�ds

(18)

Thus, Wð12Þ is completely determined by the body force and
boundary loads. Alternatively,Wð12Þ can also be written by use of
the constitutive laws

Wð12Þ ¼
ð

V

�
cijklS

ð2Þ
kl S

ð1Þ
ij þ aijP

ð2Þ
i P

ð1Þ
j þ e0E

ð2Þ
i E

ð1Þ
i þ dijkðPð2Þk S

ð1Þ
ij

þ P
ð1Þ
k S

ð2Þ
ij Þ þ fijklðPð2Þl S

ð1Þ
jk;i þ P

ð1Þ
l S

ð2Þ
jk;iÞ
�

dv (19)

Due to Maxwell relations cijkl and aij have major symmetry, hence
Wð12Þ is symmetric with respect to its upper indices. In other
words

Wð12Þ ¼ Wð21Þ (20)

Writing the above equation in the form of Eq. (18) proves the
reciprocal theorem. Furthermore, in the absence of body force and
higher-order traction, the reciprocal theorem can be written in a
compact formð

@V

½tð1Þi u
ð2Þ
i þ uð1Þxð2Þ�ds ¼

ð
@V

½tð2Þi u
ð1Þ
i þ uð2Þxð1Þ�ds (21)

An example to demonstrate this result will be shown later in the
paper.

4 Isotropic Flexoelectric Material

The tensorial nature of the constitutive laws implies a rich vari-
ety of flexoelectric materials. However, in order to understand the
general features of a flexoelectric material, we must first study the
simplest materials in this class. Therefore, we specialize to an
isotropic flexoelectric material. Isotropic materials cannot be pie-
zoelectric, so dijk¼ 0. Furthermore, for an isotropic material, the
fourth-order tensors cijkl and fijkl both have only two independent
constants and the reciprocal susceptibility tensor aij has only
one. For the treatment of SGE in an isotropic material, we follow
Aravas [48] who introduces one additional material length scale l.
As a result, our stored energy density WL takes the simplified form

WL ¼ 1

2
kSiiSjj þ lSijSij þ

1

2
l2 kSkk;iSll;i þ 2lSjk;iSjk;i

� �
þ 1

2
aPiPj þ ðf1Skk;iPi þ 2f2Sij;iPjÞ (22)

where k and l are Lame constants and f1and f2 are two flexoelec-
tric constants. a is the reciprocal susceptibility which is related to
the dielectric permittivity e and susceptibility v through a�1 ¼ e0v
¼ e� e0. The above isotropic assumption leads to the following
constitutive relations:

Tij ¼ kSkkdij þ 2lSij (23)

T̂ijk ¼ ðkSpp;idjk þ 2lSjk;iÞl2 þ ðf1djkPi þ f2dijPk þ f2dikPjÞ (24)

Ei ¼ aPi þ f1Skk;i þ 2f2Sij;j (25)

Substituting the relations above into the governing equations (4)
and (2) and making use of Eq. (1), we get

r2ðaeuþ fuk;kÞ ¼ 0 (26)

ðkþ lÞð1� l2
1r2Þuk;kj þ lð1� l22r2Þuj;kk ¼ 0 (27)

where f¼ f1þ 2f2, r2¼ @ii is the Laplacian operator and l1, l2 are
some material length scales given by

l2
1 ¼ l2 � e0f 2

ðkþ lÞae
þ f 2

2

ðkþ lÞa ; l2
2 ¼ l2 � f 2

2

al
(28)

Note that Eq. (27) differs from that of Aravas [48] in that we have
two length scales l1 and l2 while he has only l. We observe from
Eq. (28) that this is due to the flexoelectric effect. Interestingly,
the form of Eq. (27) is the same as the Navier equation of general
strain-gradient elasticity proposed by Mindlin [38], but his length
scales have nothing to do with electromechanical coupling. How-
ever, Mindlin’s argument concerning the positive definiteness of
the energy [38] still applies here. Thus, l1 and l2 have to be real in
order to guarantee positive definiteness of the strain energy and
preserve the uniqueness of the solution to the Navier equations.
This imposes a limit on flexoelectric constants.

5 Solutions to Boundary Value Problems

5.1 Beam Bending. Consider a slender beam on the e1� e2

plane, with length L and thickness 2h (with width b). The coordi-
nate x1 runs along the length of the beam through the centroid of
the cross section and x2 lies along the thickness of the beam. We
assume L� 2h, so that gradients in the e2 direction are much
larger than the gradients in the e1 direction. We will work out
the leading order solution to our beam problems based on
Euler–Bernoulli theory, which postulates

S11 ¼ �jx2; S22 ¼ j�x2; S12 ¼ 0 (29)

where j is the curvature. The stresses are

T11 ¼ �Ejx2; T22 ¼ T12 ¼ 0 (30)

where E is the Young’s modulus. In addition, suppose that the left
end and right end of the beam are open (D1¼ 0) and a potential is
applied between upper surface where uðx1; hÞ ¼ V, and lower sur-
face where uðx1;�hÞ ¼ 0. The leading order solution of Eq. (26) is

u ¼ V

2
1þ x2

h

� �
¼ bx2 þ

V

2
(31)

where b¼V/2h. Using the above we see that

P2 ¼ ðe� e0Þðfbj� bÞ; D2 ¼ �e0bþ P2;

T̂211 ¼ El2jþ f1P2; T̂112 ¼ f2P2; T̂222 ¼ fP2

(32)

where fb¼ f1� �f is the effective flexoelectric constant in beam
bending. This result has been widely used in measurements of
flexoelectric constants that utilize a beam system [14–16]. Now,
using the above equations we can rewrite the stored energy den-
sity W as a function of j and D2

Wðj;D2Þ ¼
1

2
x2

2 þ l2 � l2
f =ðaeÞ

� �
Ej2 þ 1

2
e�1D2

2 � fbD2j=ðaeÞ

(33)

where lf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0f 2

b =E
p

is a flexoelectric length scale. lf/l is a mea-
sure of the importance of flexoelectricity compared to SGE. By
integrating along the thickness direction x2, the total energy of the
beam can be written as

ð
V

Wdv ¼
ðL

0

1

2
GDj2 � 2

fbD2j
ae
þ D2

2

e

	 

dx1 ¼

ðL

0

Wbdx1 (34)
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where GD ¼ E½I þ Al2 � Al2f =ðaeÞ� with A denoting the cross
sectional area and I the moment of inertia. The principle of virtual
work yields the relation

@Wb

@j
¼ Mðx1Þ ¼ GDj� fb

ae
D2 ¼ GEjþ a�1fbbA (35)

where M is the bending moment and GE ¼ E½I þ Al2 �Al2f =ðae0Þ�.
Note that the bending rigidity of the beam is GE when
b ¼ ðV=2hÞ ¼ 0 or the electric field is zero, while it is GD when
the electric displacement D2¼ 0. Note also that GD>GE because
e> e0 and the enhancement is proportional to l2f or f 2

b . A similar
effect is also observed in beams made of piezoelectric materials
[51]. But, in contrast to piezoelectric beams, the stiffening in
flexoelectric beams is highly size-dependent as shown in Fig. 1.

Euler–Bernoulli beam theory requires

M00 ¼ GDj00 � fb

ae
D002 ¼ qðx1Þ; Q ¼ �M0 (36)

where M0 denotes ðdM=dx1Þ, q(x1) is the distributed load and Q is
the shear force. The equation above and our prediction of a size-
dependent bending rigidity which is enhanced proportionally to
f 2
b , agree with the results of Refs. [22,23,34]. Recognizing that
j ¼ ðd2u2=dx2

1Þ, we can easily integrate the above equation for
given loading and boundary conditions to get the deflection profile
of the neutral axis of the beam u2(x1).

The solutions of the equation above can be used to measure
flexoelectric constants. However, as pointed out in Ref. [20], this
can only give us fb. We are not able to determine all the flexoelec-
tric constants even for simple cubic crystals. One can try to

measure the horizontal polarization P1 to get some more informa-
tion, but this is difficult since the average P1 in any cross section
vanishes. This happens because the corresponding strain gradient
S11,1 is linear in y. This difficulty, however, can be overcome by
use of a horizontal loading which shifts the neutral axis of the
beam away from its centroid by some amount d. Assuming that
this does not perturb the bending solution by much we can calcu-
late the average horizontal polarization as

Pavg
1 ¼ 1

2h

ðhþd

�hþd

1� �
a

f j0ydy � 1� �
a

f j0d (37)

given that d/h is not too large. A precise measurement of this
smaller quantity will give us another equation to completely deter-
mine the flexoelectric constants in an isotropic material and help
determine that of cubic crystals.

5.2 Example of Reciprocity. We will use our solution to the
flexoelectric beam to demonstrate the reciprocal theorem. Con-
sider two problems (see Fig. 2) for two clamped–clamped beams
with exactly same geometries (thickness 2h, width b, and length
L). In the original problem, a force Q is exerted at x1¼L1; in the
reciprocal problem, a constant voltage V is prescribed across the
beam from L2 to L. We model this voltage as a step function and
neglect edge effects. The deflection profile of the beam is u2(x1).
The variables in the original problem will have upper index 1 and
those in the reciprocal problem will have upper index 2.

We will start with the reciprocal problem. Since there is no dis-
tributed load along the beam, Eqs. (36) and (35) give

jð2Þ ¼ d2u
ð2Þ
2

dx2
1

¼ � fbA

aGE

bHðx1 � L2Þ ¼ �
b
Vb

Hðx1 � L2Þ (38)

where Vb is introduced to avoid redundant repetition of constants
and H is the unit step function. We will use the Macaulay bracket
hin to denote the nth antiderivative of H. By applying the clamped
boundary conditions at the two ends, the deflection profile in the
reciprocal problem can be calculated

u
ð2Þ
2 ðx1Þ ¼

b
Vb

�
� 1

2
hx1 � L2i2 þ L2ðL� L2Þ

x3
1

L3

þ ðL� L2ÞðL� 3L2Þ
x2

1

2L2

�
(39)

Using this, we are able to determineWð12Þ

Wð12Þ ¼ Qu
ð2Þ
2 ðL1Þ

¼ QV

4hVb

�
� hL1 � L2i2 þ 2L2ðL� L2Þ

L3
1

L3

þ ðL� L2ÞðL� 3L2Þ
L2

1

L2

�
(40)

For the original problem, the deflection and electric displacement
are given by

Fig. 1 Size-dependent stiffening of flexoelectric beams. v in
the legend is the susceptibility constant. The bending rigidity
plotted on the y-axis is normalized against EI where E is the
Young’s modulus and I is the moment of inertia of the cross
section. The thickness of the beam is normalized against

ffiffiffi
3
p

l.
As the beam gets thinner the strain gradients increase, so the
effects of flexoelectricity become more prominent.

Fig. 2 In (a), a point load Q is applied, while in (b) there is a potential difference between the
upper and lower surface over a portion of the beam
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u
ð1Þ
2 ðx1Þ ¼

Q

6GE

�
� ðL� L1Þ2ðLþ 2L1Þ

x3
1

L3

þ 3ðL� L1Þ2L1

x2
1

L2
þ hx1 � L1i3

�
(41)

D
ð1Þ
2 ðx1Þ ¼

fb

a
jð1Þ

¼ Q

AVb

�
� ðL� L1Þ2ðLþ 2L1Þ

x1

L3

þ ðL� L1Þ2L1

L2
þ hx1 � L1i

�
(42)

Hence, we are able to calculateWð21Þ as

Wð21Þ ¼ �b

ðL

L2

D
ð1Þ
2 Vdx1

¼ QV

4hVb

L2ðL� L1Þ2

L3
ð2L1L� 2L2L1 � LL2Þ þ hL2 � L1i2

" #
(43)

Note that hL1 � L2i2 þ hL2 � L1i2 ¼ ðL1 � L2Þ2, so Wð12Þ

¼ Wð21Þ.

5.3 Torsion. Torsion of circular shafts generates a constant
strain gradient. Surprisingly, such a strain gradient does not polar-
ize an isotropic flexoelectric material. To see why, let us start with
the displacement field of a circular shaft under torsion with e3

aligned with the axis of the shaft

u1 ¼ �/x2x3; u2 ¼ /x1x3; u3 ¼ 0 (44)

where / is the angle of twist per unit length. The strains are

S13 ¼ �
1

2
/x2; S23 ¼

1

2
/x1 (45)

The nonvanishing components of the strain gradient are S13,2,
S31,2 and S23,1, S32,1. By use of Eq. (22), the flexoelectric contribu-
tion to the energy is

Wf ¼ f1Skk;iPi þ 2f2Sij;iPj ¼ 0 (46)

no matter which direction polarization takes. As a result, a circular
shaft made of isotropic flexoelectric material will not polarize
under torsion even though strain-gradient effects will lead to a
size-dependent torsional rigidity. This result also holds for
cubic crystals, where the flexoelectric tensor takes the following
form [52]:

fijkl ¼ f1djkdil þ f2ðdijdkl þ dikdjlÞ þ f3dijkl (47)

where f3 is another flexoelectric constant and dijkl is the fourth-
order Kronecker Delta which is 1 when i, j, k, l are all equal and 0
otherwise. If the axis of the shaft is aligned with one of the sides
of the cubic lattice, then the flexoelectric contribution to the
energy is

Wf ¼ f1Skk;iPi þ 2f2Sij;iPj þ f3Sii;iPi ¼ 0 (48)

which vanishes.

5.4 Disk Under Pressure. Calculating the stress in a circular
disk or cylinder with a central hole under internal and/or external
pressure is a classic problem in linear elasticity, just as calculating

the capacitance of a cylindrical capacitor is in electrostatics. The
solution in this simple geometry offers not only a direct compari-
son to classical elasticity and SGE but also some insights into
the stress and polarization fields near point defects in flexoelectric
materials. The geometry of the problem is illustrated in Fig. 3.
It is convenient to solve this axisymmetric problem in polar coor-
dinates so that the only relevant component of displacement is
ur¼ u(r). Hence, the Navier equation (27) can be simplified to

1� l2
0r2 þ l2

0

r2

	 

r2uðrÞ � uðrÞ

r2

	 

¼ 0; l2

0 ¼ l2 � ð1� �
2Þ

ae
l2f

(49)

where lf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e0f 2=E

p
is the flexoelectric length scale in this prob-

lem. From here on, we will avoid the use of a as a material con-
stant and work with e and e0. The general solution to this equation
is of the form [48,53]

uðrÞ ¼ ar þ b

r
þ cI1ðk0rÞ þ dK1ðk0rÞ (50)

where k0 ¼ l�1
0 and a, b, c, d are constants to be determined by

BCs, Ii, and Ki denote ith order modified Bessel function of the
first and second kind respectively. Once we have the displacement
field, the solution to the potential u ¼ uðrÞ can be readily worked
out using

r2u ¼ �ðe� e0Þf
e

r2 u;r þ
u

r

� �
(51)

whose general solution is given by

u ¼ �ðe� e0Þf
e

2aþ ck0I0 k0rð Þ � dk0K0 k0rð Þ½ � þ gþ h ln r

(52)

where g and h are constants to be obtained from BCs. We have six
unknown constants, hence six BCs are needed to solve for them.
From Fig. 3, we can see that traction and potential are specified at
both inner and outer surfaces. Only two other BCs are needed and
they are related to the higher-order stresses T̂ijk which depend on
the polarization field whose only nonzero component is

Pr ¼ �ðe� e0Þ u;r þ f u;rr þ r�1u;r
� �� �

(53)

Fig. 3 A disk/cylinder, with inner and outer radius ri and ro. It
is subject to a potential difference V0 between the surfaces as
well as internal and external pressure pi and po.
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The expressions for the nonzero components of T̂ijk are given
below:

T̂rrr ¼ l2 @Trr

@r
þ fPr; T̂rhh ¼ l2 @Thh

@r
þ f1Pr;

T̂hrh ¼ T̂hhr ¼ l2 Trr � Thh

r
þ f2Pr

(54)

Thus, the higher-order traction p̂ on the outer boundary is

p̂ðrÞ ¼ T̂rrr ¼ l2
@Trr

@r
þ fPr (55)

The pressure on the outer boundary is

pðrÞ ¼ Trr � T̂rrr;r þ
2T̂hrh þ T̂rhh

r

¼ 1þ 2
l2

r2
� l2 @

2

@r2

	 

Trr þ �2

l2

r2
þ l2

r

@

@r

	 

Thh þ

fPr

r

(56)

Finally, the six boundary conditions required to determine the six
constants in our solution are

pðroÞ ¼ �po; pðriÞ ¼ �pi; p̂ðroÞ ¼ p̂ðriÞ ¼ 0;

uðroÞ ¼ Vo; uðriÞ ¼ 0
(57)

We can solve for these constants, but the expressions are lengthy
and uninsightful. Instead, we plot the results for the polarization,
stress, and displacement fields for a specific geometry with
ðro=riÞ ¼ 2 in order to garner some insights. We fix the strain gra-
dient and flexoelectric length scales so that ðl=riÞ ¼ 0:2 and
ðlf=lÞ ¼ 0:5. The electric quantities are plotted in Figs. 4(a)–4(c).
The potential, electric field, and polarization in the absence of
flexoelectricity are shown as dashed lines while those with flexoe-
lectricity are shown as solid lines. The polarization and electric
field are significantly perturbed by the flexoelectric effect. The
displacement and strain fields are plotted in Fig. 5. Due to the
flexoelectric effect, the displacement is significantly reduced
compared to the classical elasticity solution and the SGE solution
(see Fig. 5(a)). The hoop strain ehh is also significantly reduced
(see Fig. 5(c)) and the variation of radial strain err is smoothed out
due to the flexoelectric effect (see Fig. 5(b)). Smaller strains imply
higher rigidity of the disk. This is reminiscent of the increased
rigidity we saw earlier in the flexoelectric beam.

Next we would like to plot the stresses. This presents a problem
because the Cauchy stress of classical elasticity no longer repre-
sents the “true” physical stress in materials with SG effects. How-
ever, according to Refs. [38,48], the true stress rij can still be
computed through the following equation:

rij ¼ Tij �
2

3
T̂ijk;k �

1

3
T̂kij;k (58)

A direct result of the above equation is that rij (referred to as
stress afterwards) is no longer symmetric. In general, rij and Tij

Fig. 4 Variation of the electric quantities along the radial direction in the disk loaded by internal/external pressure. We choose
ro/ri 5 2, po/pi 5 2, m 5 0.3, v 5 1, l 5 0.2ri, and lf 5 0.5l, as in the legend. All quantities are normalized to be nondimensional, in the
unit system where length, force, and charge are measured by ri;Er2

i ;and r2
i

ffiffiffiffiffiffiffiffi
e0E
p

respectively.

Fig. 5 Variation of displacement and strains in the disk loaded by internal/external pressure. (a) Normalized magnitude of
displacement. (b) and (c) plot the radial and circumferential normal strain respectively.
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can be very different, but there are cases where Cauchy stress is a
good approximation of the true stress. This happens to be true for
this problem as shown in Fig. 6(a). The other components of the
true stress are also plotted in Fig. 6. From Figs. 6(b) and 6(c), it is
clear that hoop stress is larger than the radial stress and is also sig-
nificantly altered by the flexoelectric effect. Accordingly, we
define a SCF as follows:

SCF ¼ jrhhjmax

pi

¼ � rhh

pi


r¼ri

(59)

From Fig. 6(c), it is apparent that flexoelectricity reduces the SCF
compared to classical elasticity or SGE. This happens because in
a flexoelectric material, part of the work done by the external
loads is used to polarize the material. This is in contrast to elastic-
ity where all the work done by the external loads is stored as elas-
tic energy in the body.

In Fig. 7(a), we plot SCF as a function of ro/ri while keeping
lf/l¼ 0.5. We also plot SCF for the pure elasticity and SGE solu-
tions. As ro/ri!1, SCF! SCF1, a constant. For the flexoelec-
tric solid, SCF1Flex ¼ 2:89 < SCF1SGE ¼ 2:99 < SCF1Elast ¼ 3:00.
Note that if f is larger than more of the external mechanical work
will be converted into electrical energy. With this in mind, we cal-
culate SCF1 as a function of f in Fig. 7(b). As f! 0, we recover

SCF1SGE ¼ 2:99 and when f approaches the limit fmax (dictated by
positive definiteness of the energy), SCF1 reduces sharply
(approximately proportional to f2). Figure 7(b) shows that at
f¼ 0.9fmax, SCF1 is reduced by more than 50%. Even in cases
where f is not as large, it is possible to alter SCF by applying a
stronger potential difference V0 between the inner and outer surfa-
ces of the disk. This is shown in Fig. 8(a). A linear reduction of
SCF is observed as the potential V0 is increased. This reduction
becomes more and more sensitive to V0 as f becomes larger. From
another perspective, this result implies that it is possible to modu-
late material strength through external electric fields. In fact, this
modulation is proportional to the magnitude of external field and
becomes stronger in materials with larger flexoelectric constants.
Similarly, the electrical behavior can be controlled by changing
the mechanical loading. Figure 8(b) shows that the magnitude of
polarization (at ri) increases proportionally with pi while Vo¼ 0 is
held fixed. This is a straightforward result of the dominating SG
induced polarization.

In order to see any of these effects in experiments, it is impor-
tant to get some estimates of fmax. Note that

fmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

e0ð1� �2Þ

s
l � l� 1010V (60)

Fig. 6 Stresses in the disk loaded by internal/external pressure. (a) Compares the profiles of the hh component of the true
stress and Cauchy stress, they differ by little. (b) and (c) plot the radial and circumferential normal true stress respectively.

Fig. 7 Stress concentration factor in the disk loaded by internal/external pressure. (a) plots the
asymptotic behavior of SCF with ro/ri fi ‘. (b) plots the flexoelectric reduction of SCF‘ with
increasing f. f 2 is normalized against f 2

max whose value is determined by requiring the energy to
be positive definite.
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Thus, the magnitude of fmax is closely related to SGE length scale.
As suggested in Ref. [54], l is on the order of several to tens of nm
while the classical estimate for f is f� 1–10 V for simple ionic
crystals [12]. This is consistent with our estimate in Eq. (60)
above. However, f for simple ionic crystals (such as, sodium chlo-
ride) is so small [28] that it is difficult to perform reliable meas-
urements. In contrast, experimental measurements carried out on
perovskite materials, e.g. barium titanate, are relatively well docu-
mented. These materials exhibit an f that is several orders of mag-
nitude greater than that of simple ionic crystals like sodium
chloride [20]. Thus, our predicted flexoelectric reduction of SCF
and its interplay with elasticity should be observable in these
materials. For these reasons, perovskite materials are now at the
cutting edge of the research on flexoelectricity.

We note here that the study of SGE and flexoelectricity are
tightly connected. As in SGE our discussion of flexoelectricity is
valid only when ri is comparable to l. In other words, this effect is
important only at nanometer length scales. If the inner diameter of
the disk is on the order of cm, it can be shown that the solution we
obtained converges to that of classical elasticity. Hence, our pre-
diction of an electric field dependent enhancement of strength
applies only to nanometer scale specimens of flexoelectric solids.

5.5 In-Plane Shear of a Disk. It is also possible to solve a
BVP for a disk under in-plane shear. The only surviving term of
displacement here is uh¼ v(r). As a result, the Navier equation for
this problem is of the same type as the previous one

1� l2
2r2 þ l2

2

r2

	 

r2vðrÞ � vðrÞ

r2

	 

¼ 0 (61)

In this problem l2
f ¼ l2 � l2

2 ¼ ðe� e0Þf 2
2 =l, and the general solu-

tion of Eq. (61) is again given by

vðrÞ ¼ ar þ b

r
þ cI1ðk2rÞ þ dK1ðk2rÞ (62)

where k2 ¼ l�1
2 and a, b, c, d are some constants to be determined

by BCs. We employ the same method as above to solve the prob-
lem with the following boundary conditions:

vðriÞ ¼ 0; sðroÞ ¼ s0; ŝðriÞ ¼ ŝðroÞ ¼ 0; uðriÞ ¼ uðroÞ ¼ 0

(63)

Fig. 8 Modulation of mechanical/electrical quantities in disk loaded by internal/external
pressure. (a) plots SCF‘ as a function of potential Vo holding po and pi fixed. (b) plots
polarization at the inner surface as a function of pressure pi, holding Vo 5 0. Nondimensionaliza-
tion is carried out in the same manner as in Fig. 4.

Fig. 9 A solution for the in-plane shear of a disk is obtained with the following parameters: ro/ri 5 2, s0/E 5 1, m 5 0.3, v 5 1,
l 5 0.2ri, and lf 5 0.5l. (a) plots normalized shear strain and (b) the normalized displacement as functions of the radial coordinate.
(c) plots the distribution of normalized azimuthal polarization. It reaches a minimum around the middle of the disk. Note that all
quantities are nondimensionalized, in the same manner as in Fig. 4.
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Here, s and ŝ denote the usual and higher-order traction respec-
tively. This type of BCs correspond to a disk being sheared from
outside with inside held fixed. The last two BCs tell us that there
is no potential difference applied between the outer and inner sur-
face of the disk. We plot the displacement, strain, and polarization
fields for a specific choice of parameters in Fig. 9. The results con-
firm the features observed in earlier results: (a) smaller displace-
ments for the same boundary loads, (b) smoother strain profiles
compared to pure elasticity or strain-gradient elasticity, and (c)
increase in rigidity. We attribute these features to flexoelectricity.

Interestingly, in this problem, the displacement field is
divergence-free. As a result the governing equation for u is com-
pletely decoupled from the deformation. However, the inhomoge-
neous strain field produces an azimuthal polarization Ph

Ph ¼ �
ðe� e0Þf2

2l2
2

cI1ðk2rÞ þ dK1ðk2rÞ½ � (64)

The magnitude of the azimuthal polarization shows an interesting
variation—it is maximum at the boundaries and smaller inside.
Note that the polarization is completely determined by c and d
and it is only observable at length scales comparable to l. A piezo-
electric problem with the same geometry and loading gives a
radial polarization. The azimuthal polarization predicted here for
a disk made of flexoelectric material can potentially be verified by
experiments.

6 Conclusions

In this paper, we have formulated the governing equations for a
flexoelectric solid and a Navier equation for isotropic flexoelectric
material, under the assumptions of small strains. We have used a
linear constitutive law and proved a reciprocal theorem for flexo-
electricity. An analogous theorem for piezoelectric materials is
well known. We have used our theory to solve some boundary
values problems for isotropic flexoelectric materials. While there
are many known analytic solutions to boundary value problems
for piezeoelectric solids there are few, if any, known solutions for
flexoelectric solids. Our solutions could be useful in the
interpretation of nanoscale experiments in the burgeoning field of
flexoelectric materials. They also indicate how the mechanical
behavior of a flexoelectric material can be modulated at the nano-
scale by the use of electric fields. The methods discussed in this
paper could be a starting point for building continuum-based com-
putational methods for flexo-electric solids. Such methods will be
required to compute displacement and polarization fields in com-
plex geometries where analytical solutions are not possible.
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