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A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since
strain gradients are large near defects, we expect the flexoelectric effect to be prominent
there and decay away at distances much larger than a flexoelectric length scale. Here, we
quantify this expectation by computing displacement, stress and polarization fields near
defects in flexoelectric solids. For point defects we recover some well known results from
strain gradient elasticity and non-local piezoelectric theories, but with different length
scales in the final expressions. For edge dislocations we show that the electric potential is
a maximum in the vicinity of the dislocation core. We also estimate the polarized line
charge density of an edge dislocation in an isotropic flexoelectric solid which is in
agreement with some measurements in ice. We perform an asymptotic analysis of the
crack tip fields in flexoelectric solids and show that our results share some features from
solutions in strain gradient elasticity and piezoelectricity. We also compute the energy
release rate for cracks using simple crack face boundary conditions and use them in
classical criteria for crack growth to make predictions. Our analysis can serve as a starting
point for more sophisticated analytic and computational treatments of defects in flexo-
electric solids which are gaining increasing prominence in the field of nanoscience and
nanotechnology.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Flexoelectricity refers to the coupling of electric polarization to strain gradients. It has been studied in-depth in liquid
crystals (Meyer, 1969; Harden et al., 2010; Buka and Eber, 2012) and biomembranes (Raphael et al., 2010; Petrov, 2006).
However, in recent years there has been a surge in interest in flexoelectric phenomena in harder materials, such as lead
zirconate titanate (PZT) and other perovskites (Nguyen et al., 2013; Zubko et al., 2013). The primary reason for this de-
velopment is the advent of accurate probes that can detect polarizations and stresses at the nano-scale (Ma and Cross, 2001,
2002; Zubko et al., 2007; Catalan et al., 2011; Chin et al., 2015). Concurrent developments have also taken place in the
theoretical interpretations of the experiments. Atomistic simulations, such as lattice dynamics (Maranganti and Sharma,
2009) and first principles calculation (Hong and Vanderbilt, 2011, 2013) have shed some light on the microscopic origins of
flexoelectric phenomena in solids and given estimates for the magnitude of the flexoelectric constants. On the other hand,
computational methods based on finite elements have been used to study stress and polarization fields in macroscopic
solids (Abdollahi et al., 2014). Recently, we presented analytic solutions to some boundary value problems in flexoelectric
solids in one and two dimensions (Mao and Purohit, 2014). Our goal in this paper is to utilize that framework to describe the
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stress and polarization fields near defects in flexoelectric solids. Defects are the spots where the effects of flexoelectricity are
expected to be prominent due to the large strain gradients in their vicinity. Our analysis will enable better interpretation of
experimental data since most specimens inevitably have defects in them.

Flexoelectricity also offers a simpler alternative explanation to some phenomena that have been discovered before. In the
1960s and 1970s a series of experiments (Koehler et al., 1962; Turchányi et al., 1973; Whitworth, 1975) were performed to
study charged dislocations in cubic crystals, i.e. alkali halides. These solids have centrosymmetric lattices which rule out
piezoelectricity as the cause for the charge carried by dislocations in them, but this symmetry does not rule out flex-
oelectricity. In fact, flexoelectric phenomena can be observed in dielectrics of any symmetry group, including isotropic ones.
We show in this paper that some of the results for charged dislocations can be qualitatively understood in terms of flex-
oelectricity. Charged dislocations were also observed in experiments on ice by Petrenko and co-workers in 1980s (Petrenko
and Whitworth, 1983). They conducted a thorough study of the electromechanical properties of ice and attributed charged
dislocations and other phenomena to a so-called “pseudo-piezoelectricity” (Petrenko and Whitworth, 1999). This phe-
nomenon assumed that the polarization in ice is proportional to the pressure gradient. This is a natural result of what is
known today as flexoelectricity (Mao and Purohit, 2014). Indeed, Petrenko and co-workers studied point defects, disloca-
tions and cracks in ice and arrived at their conclusions about pressure gradient dependent polarization from a microscopic
view point (Petrenko, 1996). We show here that the results from our formulation based on a strain-gradient coupled po-
larization agree quite well with the findings of Petrenko and co-workers.

The study of cracks and other defects in closely related piezoelectric solids has a long history (Kuna, 2010). A primary
motivation for these studies was to better understand damage and failure of piezoelectric devices. In particular, mathe-
matical techniques from linear elastic fracture mechanics (LEFM) were used to find analytic solutions for a variety of crack
problems in piezoelectric solids (Sosa, 1992; Suo et al., 1992; Pak, 1992) which are now referred to as linear piezoelectric
fracture mechanics (LPFM). Parallel experimental studies were also conducted, as summarized in Schneider (2007). It was
realized that both mechanical failure and electric breakdown are responsible for damage in piezoelectric devices due to the
singular nature of the stress and electric fields near a crack tip. For example, an “electric-yielded” zone in ferroelectrics was
proposed (Gao et al., 1997; Wang, 2000), which is analogous to the plastic zone in fracture mechanics. Other important
developments in this field involve treatment of boundary conditions, anisotropy, mode mixing etc., as summarized in Kuna
(2010). All these studies have led to the development of a powerful continuum framework to study electromechanical
effects in cracks. Some insights from this literature are used in our analysis. Also, since strain gradient elasticity (SGE) is an
important ingredient of flexoelectricity, we draw upon the literature on asymptotic solutions of crack tip fields in gradient
elasticity (Zhang et al., 1998; Aravas and Giannakopoulos, 2009).

This paper is organized as follows. First, we construct Green's function for a flexoelectric boundary value problem. We
use it in our studies of point defects and dislocations. Second, we give an analytic solution to the problem of a single point
defect in an isotropic flexoelectric solid. Third, we solve for the polarization fields of screw and edge dislocations and
connect our analysis to various experiments. Fourth, we obtain asymptotic solutions to crack tip fields for Mode I and II
cracks in flexoelectric solids with both conducting and insulating conditions, as well as Mode III, Mode D and Mode E cracks.
We also give solutions for some mixed mode cracks. Finally, we discuss new fracture criteria that could be used for pre-
dicting failure in flexoelectric solids.
2. Flexoelectric Green's function

We consider an isotropic flexoelectric solid in which the displacement field is u x x x, ,k 1 2 3( ), k 1, 2, 3= and the electric
potential is x x x, ,1 2 3φ ( ). Such a solid is characterized by the Lame constants, λ and μ, an SGE length scale l, two flexoelectric
constants f1 and f2 and the dielectric permittivity ϵ. If the deformation and charge separation are sufficiently small then we
can use a linearized theory and derive a Navier-type equation for the displacement field and the electric potential. The
governing equations obtained in Mao and Purohit (2014) are as follows:
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2
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with f f f21 2= + and a 1
0= ϵ − ϵ− , where ϵ0 is the permittivity of vacuum.

Now, let l1i i
2 2= ( − ∇ ), then the flexoelectric Green's function for displacement Gij can be obtained by solving the

following equation:

rG G 0, 4ik kj ij kk ij1 , 2 ,λ μ μ δ δ( + ) + + ( ) = ( )
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where r x x x, ,1 2 3= ( ) is the position vector and Gij corresponds to the displacement ui in response to a unit point force in the j
direction at origin. Following the techniques of Phillips (2001), we employ the Fourier transform of Green's function, Gij

˜ .
Then the equation above implies

l q q q G q l q G1 1 . 5k j ik ij ij1
2 2 2

2
2 2λ μ μ δ( + )( + ) ˜ + ( + ) ˜ = ( )

where qi are the coordinates in the reciprocal space and q2 is the square sum of all qi's. Multiplying by qj on each side and
summing over j, we are able to solve for q Gk ik

˜ :
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This intermediate result can be inverted to get
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We will use this result later in our analysis of a point defect. From (5) and (6), we solve for Gij
˜ to get
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We observe that due to flexoelectricity, l l0 2≠ . So, unlike in SGE, we have two different material length scales in the problem.
By inverting (8) we get
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where the Fk's are
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On the other hand, the 2D Green's function is given by
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where the Fk's are given by

F r r r l r K r l kln 1 4 ln / , 0, 2, 12k k k
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and K x0 ( ) is a modified Bessel function of the second kind. In both expressions we see the appearance of two distinct
flexoelectric length scales. In the next section we will use the 3D Green's function to compute the displacement field and
potential near a point defect in a flexoelectric solid.

Green's function calculated above is the solution to a point force exerted at the origin in a flexoelectric solid. To work out
the solution for φ and ui when a point charge is placed at the origin in a flexoelectric solid, the governing equation (1) must
be modified to

f
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where ρe is the free charge density. As a consequence, the Navier equation (2) must also be modified as
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which effectively creates a body force due to the free charge. Now, for a unit point charge, or to compute Green's function,
we set reρ δ= ( ). By the same technique as we used for Green's function for a point force, we find that uk k, is given by
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This is the flexoelectric contribution to the potential φ. By plugging the above into the electric governing equation and
inverting it we get
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Clearly, we recover the classical electrostatic solution of a unit point charge in a dielectric when we let the flexoelectric



Fig. 1. In the plots above the potential is normalized against l2 /2
0λ μ( + ) ϵ and r is normalized against l, the SGE length scale. l f / 2f 0

2 λ μ= ϵ ( + ) is the
associated flexoelectric length scale. (a) depicts the difference between the potential field due to a point defect in a flexoelectric solid and that due to a
point charge in a dielectric with the same dielectric constant with and without flexoelectricity. The defect curve decays rapidly. In the far field, point charge
solutions converge. (b) shows how the flexoelectric constant f changes the potential field. We observe that the potential becomes negligibly small just a few
diameters away from the defect. (c) shows the magnitude of the potential for various values of a, the radius of the point defect, as a function of the
flexoelectric length scale lf. We normalize lf against l. We see that flexoelectricity is prominent only when both defect size a and lf are comparable to l.
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constant f vanish. The above solution suggests that the flexoelectric contribution to the potential is of the Yukawa type. We
will see this again in the analysis of a point defect. Essentially in the far field, the potential of point charge in a flexoelectric
solid and a pure dielectric converge. We illustrate this in Fig. 1.
3. Point defects

From the continuum perspective a point defect can be modeled as a spherical hole of some radius a0, with prescribed
radial displacement δ on the surface of that hole. Following the argument of Phillips (2001), the displacement field of an
isotropic point defect can be computed using Green's function as
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where f0 is a constant that is yet to be determined. From the boundary condition at the surface of the hole, u ar 0 δ( ) = , we
obtain
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where r l/ 0γ = and a l/0 0 0γ = . In the limit of a l0 0⪢ , we recover the elastic result (Phillips, 2001). A similar expression was
obtained by Adler (1969) in the 1960s in an SGE calculation. Our result differs from that result only by a change of length
scale (l0 instead of l). Hence, in the limiting case of no flexoelectricity, our results converge to that of SGE. Intriguingly,
Eringen (1984) arrived at a very similar expression for the displacement field around a point defect in a non-local piezo-
electric solid. In the isotropic case his result differs from our's only by a pre-factor (a different boundary condition was used
in Eringen, 1984). Note, however, that an isotropic solid cannot be piezo-electric. Hence, our result establishes an interesting
connection between flexoelectricity and a non-local theory of electromechanics. This is by no means surprising since similar
connections between gradient elasticity and the non-local elasticity theories are well-known (Yang, 2005).

We are interested in the variation of the electric quantities around this point defect. From Eq. (1) we can compute the
potential due to its presence in an isotropic flexoelectric solid:

a f
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e e
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f fm0
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γ
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( ) = − ( )
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where A e1 10 0 0γ= − ( + ) γ− and e /fφ γ∼ γ− is a Yukawa-type potential. This result was also reported in Eringen (1984). In that
work the length scale that appeared in the expressions was interpreted as the Debye screening length, which was expected
to shorten due to the presence of non-local piezoelectricity. In our case the length scale appearing in the expressions has its
origins in SGE and flexoelectric effects. Since here we have l l0 < , flexoelectricity shortens the SGE length scale. We have
plotted the potential around a point defect as a function of distance in Fig. 1(a). For comparison we have also plotted the
potential field due to a point charge in a solid with the same dielectric constant as our flexoelectric solid. The field in the
flexoelectric solid decays much faster. The effects of the flexoelectric length scale lf and the defect size a0 are analyzed in
Fig. 1(b) and (c) respectively. We find that the flexoelectric effect is prominent only when lf and a0 are both comparable to
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the SGE length scale l.
We can also work out the radial component of the polarization around our point defect:

P
l

e1
.

20
r

fm
0

0
2

φ γ
γ

= ϵ [( + ) ]
( )

γ−

Note that this potential and polarization field arises around a point defect even in an isotropic solid. This is because flex-
oelectricity arises in any dielectric irrespective of lattice symmetry. In fact, electric polarization has been detected around
defects in ice (Evtushenko et al., 1987) in a pursuit for the origins of electromagnetic radiation from glaciers. In a series of
experimental and theoretical works by Petrenko and co-workers this radiation was attributed to “pseudo-piezoelectricity”,
in which a material had induced electric fields in proportion to pressure gradients – which is exactly (1). Petrenko et al.
investigated the microscopic origins of this effect and showed that the potential field around static dislocations and cracks
in ice could be consistently explained beginning with this idea (Petrenko, 1996). This idea was further employed to quantify
the stress and potential fields around moving/growing cracks. That leads to the possibility of electromagnetic radiation since
a time dependent pressure gradient generates a time dependent electric field (Petrenko, 1996). We will come back to this
point when we analyze cracks.

Finally, with the advent of 2D flexoelectric materials, such as graphene, carbon nitride and many others, it is now
possible to study the polarization field around the defects in them (Zelisko et al., 2014). The polarization fields in this case
must be computed using the 2D Green's functions that we discussed in the previous section. This could be a way to validate
the analytic solutions presented in this paper and others.
4. Line defects

4.1. Screw dislocation

We showed in Mao and Purohit (2014) that even though torsion of an isotropic circular rod produces a strain gradient, it
does not polarize the rod due to the symmetry of the flexoelectric tensor fijkl. A similar result also holds for a material with
cubic symmetry which has three flexoelectric constants. We show here that the result can be extended to screw dislocations
in such materials. If the axis of the screw dislocation is along the e3 direction then the only non-zero displacement field is u3.
Hence, the field equations for an isotropic flexoelectric solid reduce to

l u1 0, 0. 212
2 2 2

3
2φ( − ∇ )∇ = ∇ = ( )

These equations are the same as those in the SGE problems studied by Lazar (2013), except for a different length scale.
Hence, we can directly use his results. The relevant 2D Green's function is

⎛
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where r x y2 2= + and K x0 ( ) is a modified Bessel function of the second kind. According to Lazar (2013), the distortion of a
screw dislocation with a Burgers vector b0, 0, z( ) can be constructed as
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where K x1( ) is a modified Bessel function of the second kind. By changing to cylindrical coordinates we get
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where y xtan /1θ = − . Therefore, strain S can be written as f rS e e e esym z zβ= = ( )( ⊗ + ⊗ )θ θ . In other words, the θ com-
ponent of strain is a function of only r while all other components vanish. According to Sharma and Ganti (2005), we know

f r
f r

r
S e e e e e e e e e e . 26z z r r z z r∇ ⊗ = ′( )( ⊗ + ⊗ ) ⊗ − ( ) ( ⊗ + ⊗ ) ⊗ ( )θ θ θ

These non-vanishing gradient terms do not induce any polarization in the isotropic flexoelectric solid due to the symmetry
of the isotropic fijkl (no terms of the above have any repeated index). The same holds for cubic materials (Mao and Purohit,
2014). This result is consistent with Koehler et al. (1962), Turchányi et al. (1973), and Whitworth (1975), which revealed that
in cubic ionic structures edge dislocations carry a charge but screw dislocations do not. We consider edge dislocations in the
following section.



S. Mao, P.K. Purohit / J. Mech. Phys. Solids 84 (2015) 95–115100
4.2. Edge dislocation

In the case of the edge dislocation one could follow Lazar (2013) to construct the displacement field using Green's
function. However, following Eshelby (1966), we find it more convenient to work with the divergence Θ and rotation Ω,
which are defined as

u e u, , 27i i i ijk j k,
1
2

Θ Ω= = ∂ ( )

where eijk is the permutation symbol. The displacement field can be reconstructed through the following equation:

u e . 28i i ijk j k
2

, ,Θ Ω∇ = + ( )

This is just the Helmholtz decomposition of ui
2∇ , which splits it into a rotation-free part i,Θ and a divergence free part eijk j k,Ω .

In this problem 3Ω ΩΩ = = can be treated as a scalar. Eshelby (1966) used this idea to solve elasticity problems. In linear
elasticity, Θ0 and Ω0 are governed by the following equations:

r r r r
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, 29
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Ω∂
∂

= ∂
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∂
∂
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where 1 / 1 2σ ν ν= ( − ) ( − ) is a material constant. This means that 0σΘ andΩ0 are harmonic conjugates. Now, in our problem
with the isotropic flexoelectric solid, dilatation and rotation are each governed by a distinct length scale:

e j k0, , 1, 2, 30j j k k0 , 3 2 ,( )σ Θ Ω+ = = ( )

where l10 0
2 2= ( − ∇ ) and l12 2

2 2= ( − ∇ ) are linear operators. More explicitly, in polar coordinates:
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Therefore, if we replace 0Θ and 2Ω withΩ0 and Θ0, we recover (29). As a consequence, a solution of our problem can be
constructed by solving

, . 330
0

2
0Θ Θ Ω Ω= = ( )

The solution for Θ and Ω can be obtained by inverting the operators 0 and 2. Now, suppose we have an edge dislocation
with burgers vector b , 0, 0x( ), then the well known elasticity solution is given by
Fig. 2. (a) plots radial distribution of electric potential at /2θ π= , with various lf's. The electric potential is significant only close to the dislocation. A large lf
accentuates the peaks in the curves. (b) plots the radial polarization field with different dielectric constants. We clearly observe that the curves almost
overlap when dielectric constant is larger than 5. All quantities here are normalized, with potential φf by φfm, polarization Pr| | normalized by Pm| | and radial
coordinates r by the SGE length scale l.
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Following the methods used in Lazar and Maugin (2006) we obtain
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where γ is defined as r l/ 0, as for the point defect, r l/2 2γ = and K x1( ) is a modified Bessel function of the second kind. It can be
shown that the above results converge to classical linear elasticity when l 0→ , f1, f 02 → and to SGE when f1, f 02 → . A direct
consequence of the above solution is the associated electric potential:
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where fb a l/ 2fm
x 0φ π σ= ( ϵ ). This potential is only related to the bulk flexoelectric length scale l0. It reaches its maximum

around l0, as plotted in Fig. 2(a), and decays to 0 in the both limits of 1γ⪢ and 1γ⪡ :

1
when 1; ln 2 when 1.

37
f fφ

γ
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( )

Generally speaking, in single crystals the length scale l0 and l are comparable to bx (Maranganti and Sharma, 2007).
Therefore, strain-gradient induced electric potential is significant only in the vicinity of the core, namely when r l∼ .
Moreover, the electric field, as the negative gradient of this potential, has the appearance of a Lennard-Jones potential – the
field decays strongly when r l0< , reaches a minimum, and then increases slowly for r l0> . The magnitude of the electric
field dies down in the far field, but reaches a maximum in the vicinity of r l2 0∼ , still in the range r l∼ . In that region:

E1 10 V, 1 10 1 10 V/cm, 38fm m 7 8φ ∼ – ≈ × – × ( )

since l 10 m0
9≈ − (Nowacki, 2006) and f 1 10 V∼ – (Zubko et al., 2013) (this is a conservative estimate of f). Interestingly,

Turchányi et al. (1973) reported from their experiments decades ago, that in alkali halide crystals, the field generated by a
“charged” dislocation is in the range of 3.5 10 1.05 10 V/cm6 7× – × . This is in good agreement with our estimates above.

These dislocations are called “charged” because they create non-zero electric field and electric potential. This does not
violate Eq. (1) since the “free charge” density ρe is still zero. Since the total charge is the sum of free charge and polarized (or
bound) charge, it is possible that the dislocation generates non-vanishing electric field without carrying any free charge.
Here the polarized charge arises due to the flexoelectric effect.

We can also compute the polarization field around the dislocation using the isotropic constitutive equations (Mao and
Purohit, 2014):

P a f u f u u a f f e . 39i i k ki j ji i jj i i i j j
1

, 1 , 2 , ,
1

, , 2 3 ,( )φ φ Θ Ω= − [ + + + ] = − ( + + ) ( )− −

In polar coordinates the polarization field is

⎡
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⎤
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P
r l
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{ ϵ
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1 1 ,
41

m

2
0

1
2

2 1 2 2
2

0 2
θ

σ
γ γ γ γ γ γ=

( )
{ ϵ

ϵ
+ ( ) − + ( ) + ( ) }

( )
θ

where P b f al/ 2m
x

2π= ( ). Unlike the potential we have both γ and γ2 present in these equations. However, in most cases, the
polarization will be dominated by the γ2, and hence f2 terms. This is evident from Fig. 2(b) in which we see that curves for
dielectric constant of 5 and 10 are almost identical. For most solids in which flexoelectricity is prominent, dielectric constant
is 102 or more. In perovskite materials, for which it is more than 103, we can safely claim that the polarization field around
an edge dislocation is determined by f2.

From the polarization field, we are able to estimate the line charge density of the dislocation and compare it with the
experiments done by Petrenko and Whitworth (1983) on charged dislocations in ice. Again, as indicated above, the “charge”
that we are referring to is the charge due to polarization rather than the free charge. The polarized line charge density λe can
be written as

Pl
b f
l

1.6
.

42
e x

0
2

0
λ

π
≈ ≈

ϵ
( )

Since the dielectric constant of ice is around 100 (Hobbs et al., 1966) the polarization must be dominated by the f2 term.
From the data given in Petrenko and Whitworth (1983), we know l 50 m0 ≈ μ , b a0.73 10 mx

9≈ ∼ − , and from Zubko et al.
(2013) f 1 10 V∼ – , hence
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e a0.01 0.1 pC/m 10 10 / , 43e 4 3λ ≈ – ∼ – ( )− −

where a is the lattice parameter and e is the electron charge. The line charge density measured in the experiments is
e a3.0 10 /e 3λ = × − , reasonably close to our rough estimate. This suggests that flexoelectricity could provide a plausible

reason for charged dislocations in ice.
Besides ice, perovskite materials like barium titanate and strontium titanate (STO) are good candidates to observe in-

terplay between dislocations and flexoelectricity. These materials have larger flexoelectric and dielectric constants and
much shorter screening length scale l0 (especially, in single crystals) (Maranganti and Sharma, 2007). For example, Zubko
et al. (2007) measured the polarization constant of STO to be around 1–10 nC/m. This suggests that the charges around a
dislocation would be on the order of 10 10 C/m4 5 2– μ at room temperature in STO. At lower temperatures the dielectric
constant is even higher, so there will be more charge near the dislocation. This is a prediction from our analysis that could be
verified against experiments.
5. Crack mechanics

We now extend our analysis to cracks in flexoelectric solids. Since crack tip fields are singular there are large gradients
near the tips. Thus, we expect flexoelectricity to play a prominent role in determining the intensity factors. To tease out the
contribution of flexoelectricity we will perform an asymptotic analysis of crack tip fields in flexoelectric solids. We expect
that the effects of flexoelectricity will die out far enough away from the crack tips just as we observed for point defects and
dislocations. Here we follow the notation as in Mao and Purohit (2014), where Tij is the stress and Tijk

^ is the higher-order
stress.

5.1. Mode III crack

We start by considering a semi-infinite Mode III crack along the x1-axis with crack tip located at the origin. This is an
anti-plane shear problem with out-of-plane displacement u w3 = and an electric potential φ. They are homogeneous along
the x3-axis but functions of in-plane coordinates, x1 and x2. The only surviving stresses are shear stresses Ti3 and T3i with
i¼1,2. Recall that the antiplane shear version of the governing equation is (Mao and Purohit, 2014)

l w0, 1 0. 442
2
2 2 2φ∇ = ( − ∇ )∇ = ( )

As for the boundary conditions, we require that the crack faces are traction free, so that at θ π= ± :

t T T T T 0, 453 23 123,1 223,2 213,1= − ^ − ^ − ^ = ( )

r T 0. 463 223= ^ = ( )

We have used a cylindrical coordinates here with x r cos1 θ= and x r sin2 θ= . We also impose the impermeable electric
boundary condition:

D x x0 at 0, 0. 472 2 1= = < ( )

For example, this is a good approximation for cracks in ceramics with air between the open crack faces. We also require that
far away from the crack tip the electric field and electric displacement decay to zero. The above imply that the in-plane
component of E and D admit only the trivial solution, thus being irrelevant for our problem. From the constitutive equations
we have

T w T l w w, , 48i i ii ii3 , 3
2

,
2 2μ μ α= ^ = [ − ∇ ] ( )

T T l w P f w, 49123 213
2

,12 3 0 2
2μ^ = ^ = = − (ϵ − ϵ ) ∇ ( )

where f al/2
2
2 2α μ= . We require 1/22α ≤ (see the Appendix).

To find the asymptotic crack tip solution we assume that w r Fs s θ= ( ). Then the leading order solution is

⎛
⎝⎜

⎞
⎠⎟w r C

r
l

, sin
2

5
3

8
3

sin
3
2

,
50

3

3
2θ θ α θ( ) = [ − − ]

( )

with C3 being an undetermined constant which generally depends on l. In fact, C3 is related to the stress intensity factor.
Note in the above asymptotic solution that as l and α tend to 0, w r, θ( ) tends to the classical solution from linear elastic
fracture mechanics. This idea will come up again whenwe compute the energy release rate. When we let 0α → , the solution
converges to the SGE version of the crack problem, with just the pre-factor to be determined (Zhang et al., 1998).

An interesting result emerging from this displacement field is that an out-of-plane polarization is expected:
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3

2 3θ π= ( ) =
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This polarization is independent of z. This prediction could perhaps be verified in an experiment.

5.2. Planar cracks

The solution of the asymptotic crack tip fields in Mode III involves solving a simpler problem than Mode I and Mode II.
But, in the Mode III solution we saw some essential features of the crack-tip fields that will be present also for Mode I and
Mode II cracks. The key difference between plane cracks of Mode I and II as opposed to Mode III is that the dilatation
gradient (which is directly proportional to the hydro-static pressure gradient) induces a non-trivial electric field around
plane cracks. This fact was utilized by Petrenko to explain how “pseudo-piezoelectricity” could lead to emission of elec-
tromagnetic radiation from a steadily moving crack in glacial ice (Petrenko, 1996).

For simplicity, we will discuss only the plane strain version of this problem. Here we have, u u x x,i i 1 2= ( ), i 1, 2= and
u 03 = . Recall the governing equations (1) and (2). Let uk k,Θ = be the dilatation. Taking the divergence on both sides of (2)
the governing equations become

a f 0, 522 φ Θ∇ ( ϵ + ) = ( )

l1 0. 530
2 2 2Θ( − ∇ )∇ = ( )

In order to find the crack tip asymptotic solution, we will again assume u r Fi
s

s
i θ= ( )( ) and r Gs sφ θ= ( ). Then, the solutions that

have a r1/2 singularity are

r c c c ccos
2

cos
3
2

sin
2

sin
3
2

, 54
1/2

1 2 3 4Θ θ θ θ θ= ( + + + ) ( )

r c c
f

a
cos

2
sin

2
, 55

1/2
5 6φ θ θ Θ= ( + ) −

ϵ ( )

where ci, i¼1–6, are all constants to be determined. We will now discuss the (displacement) symmetric mode (Mode I) and
anti-symmetric mode (Mode II) separately, in both pure insulating and pure conducting case. We will also discuss the
mixture of (electrical and mechanical) modes. Since (52) contains only partial information of the governing equation, we
will need another equation to complete the solution. We will follow the approach of Aravas and Giannakopoulos (2009).
5.2.1. Mode I, pure insulating/conducting
For a Mode I crack we require that u r u r, ,r rθ θ( ) = ( − ) and u r u r, ,θ θ( ) = − ( − )θ θ . Without loss of generality, we can

assume the following:

u
r
l

A A Acos cos 2 cos
2

,
56r

3

1 2 0θ θ θ= ( + + )
( )

u
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( )

where Ai's are all unknown constants. Our goal is to determine these constants by insisting that the governing equations and
boundary conditions are satisfied. The above electric potential is of the general asymptotic form that satisfies (1).

By differentiating the electric potential we see that the electric field components are
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Then, by constitutive laws (Mao and Purohit, 2014), we compute the polarization:
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By the constitutive equation D E Pi i i0= ϵ + , we can determine the electric displacement easily and show that this Di is indeed
divergence-free. We now turn to the mechanics part of this problem. The strains are

S
r
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A A A
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,
64rr 1 2 0θ θ θ= ( + + )
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From the constitutive law (Mao and Purohit, 2014) the stresses are

T S S T S S T T S2 , 2 , 2 . 67rr rr rr r r rλ μ λ λ μ λ μ= ( + ) + = ( + ) + = = ( )θθ θθ θθ θ θ θ

The higher order stresses are given by

T l T fP T l T f P T T l T f P
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For convenience we also compute p Tjk ijk i,= ^ :
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Now we are ready to plug these into the governing equations. The equilibrium equation is given by (Mao and Purohit, 2014)

T T 0. 72jk j ijk ij, ,− ^ = ( )

We substitute for Tjk and Tijk
^ , then to leading order this boils down to

p r p p p 0. 73rr r rr,
1

,+ ( + − ) = ( )θ θ θ θθ
−

Note that this is just one of the two equilibrium equations. However, this equation and (52) are the full governing equations
for the flexoelectric crack problem. As in LEFM, here we assume traction free boundary conditions along the faces of our
semi-infinite crack. So, the traction and higher order traction are both zero on the crack faces (Aravas and Giannakopoulos,
2009). We have not put any restrictions on electric part of the solution other than the governing equation it has to satisfy.
From the traction free conditions, we find that at θ π= ± :

t p T 0, 74r r rr r,= − − ^ = ( )θ θ θ

t p T 0, 75r r,= − − ^ = ( )θθ θθ θ θ

T T 0. 76r
^ = ^ = ( )θθ θθθ

The second and third of these boundary conditions boil down to
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⎜ ⎟⎛
⎝

⎞
⎠T
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1/2αβμ^ = =

( )θθ

−

Hence, if we insist on the traction-free boundary condition then A6 must vanish.
Before starting the discussion on the electric part of the solution, we introduce some non-dimensional material constants
f l a/2α μ= ( ), f l a/β μ= ( ) and ν the Poisson ratio. We will also use the relation a 1ϵ ≈ , which is typical for solids with large

dielectric constants and are the main focus of this study. Following Aravas and Giannakopoulos (2009), we define intensity
constants, C11 and C12, which are given by

C
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r l
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,

/
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,
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.
79r r

11
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0

π Ω π= −
( )

= − ( )

( )
θ

→ →

Here, Ω as defined in (27) is the rotation of the displacement field.
Now, we turn to the electric part of the solution. First, let us consider the Mode I pure impermeable/insulating crack

boundary condition:

D r D r, 0, , 0 0. 80π( ± ) = ( ) = ( )θ θ

By imposing this boundary condition (since A 06 = , D r, 0 0( ) =θ is already satisfied), the solution to Dθ is
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Since the Dθ component of electric displacement is 0 behind and ahead of the crack tip it does not contribute to the J integral
(as will become clear later). Even though Dθ vanishes, the corresponding electric field component at θ π= ± does not:
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For the Mode I pure conducting case, the boundary conditions are

E r E r, 0 0, , 0. 83r r π( ) = ( ± ) = ( )

Again, this makes that the contribution of the electric part to the J integral vanishes. The solution is
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r 11 12θ
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where 1 / 1 2σ ν ν= ( − ) ( − ) is a material constant which we used for the edge dislocation. Along the crack faces, E r, π( )θ is
given by

E r C C l
r

,
/

3 4
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.
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11 12π
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σ
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ϵ
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θ

The fact that the electric field perpendicular to the crack face does not vanish and is proportional to r1/ asymptotically
is of interest. Imagine a steadily growing crack so that, r r t= ( ) and Eθ is a function of time t as well. If the crack is moving
quasistatically along the x1-axis at a constant speed v, then we know E r v3/2̇ ∝θ

− . According to the Maxwell equations, this
will induce a magnetic field. Hence a growing crack in a flexoelectric solid will emit radiation. This was observed in a series
of experiments by Petrenko and co-workers for cracks in ice (Petrenko, 1996). The simple model they used postulated that
the electric field is proportional to the hydro-static pressure gradient. In our analysis it is the flexoelectric constant f that
relates them. Hence, the experiments carried out by Petrenko and co-workers strongly support their idea that “pseudo-
piezoelectricity” (or flexoelectricity) is responsible for radiation emitted from sliding glaciers.

However, unlike Petrenko and co-workers (Petrenko, 1996) who simply use the results from LEFM to deduce the po-
tential field, here we have provided a solution that satisfies both the mechanical and electrical governing equations. We see
that the field produced around the crack tip is indeed asymptotically similar to that in the piezoelectric case, both r 1/2− .
However, ice is not piezoelectric, so the flexoelectric effect could very likely be the cause behind the effects seen by Petrenko
and co-workers. Aside from the postulates about the coupling between the gradients of hydrostatic pressure/dilatation and
polarization, there are also couplings that come from the gradients of shear stresses/strains which are also prominent
around the crack tip and included in our analysis.
5.2.2. Mode II, pure insulating/conducting
For a Mode II crack we require that u r u r, ,r rθ θ( ) = − ( − ) and u r u r, ,θ θ( ) = ( − )θ θ . Without loss of generality, we can

assume the following:
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where Bi's are all unknown constants. In order to find all Bi's we carry out the same calculations as in the Mode I case. The
crack faces θ π= ± are again assumed to be free of tractions and higher order tractions. At 0θ = we assume that all the
fields are continuous. Again, due to the traction free boundary conditions:
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so that B 06 = . For the same reason as in Mode I, the displacement field can be fully determined by the following intensity
constants to C21 and C22:
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Now, consider the pure insulating and pure conducting crack boundary conditions just as we did in Mode I. For the pure
insulating case, we have the following solution for Dθ:
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For the pure conducting case, we have
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Again, for both purely insulating and conducting cases the electric contribution to the J integral is zero.
5.2.3. Mode D and Mode E
Just as in Mode I and Mode II cracks, the displacement fields for Mode D (insulating, zero traction) and Mode E (con-

ducting, zero traction) are determined by C i j, , 1, 2ij = . Generally, when a crack is conducting, we define the electric field
intensity factor KE as

K r E rlim 2 , 0 . 95E
r

r
0

π= ( ) ( )→

For insulating cracks we define KD as

K r D rlim 2 , 0 . 96D
r 0

π= ( ) ( )θ
→

The boundary conditions for Mode D are

t t D
K

r
0,

2
at 0.

97r
D

π
θ= = = =

( )θθ θ θ

This is the case in which the relevant stresses and higher-order stresses are zero along crack line, therefore The sole con-
tribution to the J integral comes from the electrical part. In order to find Cij we have to impose two more conditions on the
higher order tractions since we have a gradient theory:

T T 0 at 0. 98r θ^ = ^ = = ( )θθ θθθ

All these lead to



S. Mao, P.K. Purohit / J. Mech. Phys. Solids 84 (2015) 95–115 107
C C C 0, 9911 12 21= = = ( )

C
K

l2
2 1 1 2 .

100
D

22
πμ

α ν β ν=
ϵ

[ ( − ) − ( − )]
( )

The boundary conditions for Mode E are, at 0θ = :
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On the crack faces, θ π= ± , traction and higher-order traction are zero and E 0r = . These conditions give
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5.2.4. Mixed modes
The classification above separates mechanical and electrical boundary loads. In practice, whenwe are dealing with cracks

in electromechanically active materials, it is difficult to completely separate mechanical modes and electrical modes. As
mentioned in a recent review of closely related piezoelectric fracture (Kuna, 2010), “mechanical and electrical quantities are
inherently coupled at the crack” and “there is always a mixture of (mechanical and electrical) crack opening modes”. For this
reason we give some results on mixed modes below.

Recall the boundary conditions of the pure conducting case which result in KE¼0, and the pure insulating case which
result in KD¼0. Now, let us imagine a crack under Mode I loading. From the fact that A 06 = (traction-free faces), we know
that D r, 0 0( ) =θ before we impose any electric boundary condition (as discussed in Mode I pure insulating crack). Also, recall
that in Mode D all constants related to Mode I, i.e. C11, C12 are zero. This means that in a flexoelectric solid, Mode I cannot be
mixed with Mode D (under the traction free faces assumption). If we forcefully introduce Mode D together with Mode I,
then C22 will be non-zero, and the crack will have a Mode II component too. A similar argument shows that Mode II cannot
be mixed with Mode E under the current framework.

On the other hand, since the Mode I solution does not exclude the possibility of non-zero KE, we can have a crack in
which Mode I pure conducting conditions are mixed with Mode E. Then, the boundary condition is different from that of the
Mode I pure conducting case, viz.,

E r E r
K

r
, 0, , 0

2
.

106r r
Eπ
π

( ± ) = ( ) =
( )

We have computed the strain profiles for this boundary condition. For the purposes of illustration we picked a particular set
of material parameters: α ¼ 0.5, β ¼ 0.6, ν ¼ 0.3. Then, the strain profile is
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Fig. 3. (a) plots the strain profiles at r¼ l as a function of θ for a Mode I crack. (b) plots the normalized s22 at /2θ π= for a Mode I crack in an isotropic linear
elastic solid, a linear SGE solid and a flexoelectric solid. We used material constants 0.5α = , 0.6β = , 0.3ν = . The intensity factors we used for (a) and the
flexoelectric curve in (b) are C 3.3011 = , C 3.43312 = , K 1.04

I = . For SGE in (b), they are C 3.06111 = , C 3.43312 = , chosen according to Tsantidis and Aravas (2011).
The flexoelectric intensity factors and elastic intensity factors are chosen such that the energy release rate is fixed. Details of the energy release rate can be
found in a later section. s22 are normalized against μ, the shear modulus, and r against the SGE length scale l, as in other graphs.

S. Mao, P.K. Purohit / J. Mech. Phys. Solids 84 (2015) 95–115108
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

S C C K C C

C C K
r
l

0.21 0.60 0.13 cos
2

0.55 0.37 cos
3
2

1.04 0.87 0.043 cos
5
2

.

109

11 12 4
I

11 12

11 12 4
I

θ θ

θ

= [ − + + −

+ − + + ]

( )

θθ

These are plotted in Fig. 3(a) for r¼ l. Notice that instead of using KE we introduce, for convenience, a non-dimensional
constant K4

I , which is a linear combination of C11, C12 and KE (detailed expression in Appendix). It is defined as

K
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We also compute true stress s22 (as defined in Aravas, 2011) for the above-mentioned material parameters, as depicted in
Fig. 3(b). The similarity between the SGE solution and the flexoelectric solution is clear. Interestingly enough, the s22 plot
suggests compression just behind the crack tip, a feature also observed by Aravas and Giannakopoulos (2009).

For the same material parameters the strain profile for a Mode II pure insulating crack mixed with Mode D is
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Here again, for convenience, a non-dimensionalized intensity K4
II is used instead of KD:

K K l/ 2 . 114D4
II πμ= ϵ ( )

As discussed in the beginning of this section, Mode II cannot be mixed with Mode E.
Notice that we have not used the conventional intensity factors KI, KII etc., because their expressions are lengthy and

cumbersome. However, those conventional intensity factors can be written in terms of C11, C12, K4
I and C21, C22, K4

II as shown
in the Appendix. Using the constants defined above we can work out the displacement, strain and stress profiles. The
expressions are long and are not reproduced here.



Fig. 4. Contours used in computation of the energy release rate. We use the circular contour for the Mode III crack and the box contour for Mode I and
Mode II cracks. (a) Circular contour. (b) Box contour.
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5.3. J integral

In analogy to piezoelectricity, the flexoelectric energy momentum tensor can be written as

Q H u T u D , 115ik ik ij j k ijl l jk i k, , ,δ σ φ= − − ^ − ( )

where H is the enthalpy of the system defined as

dH T dS T dS D dE . 116ij ij ijk jk i i i,= + ^ − ( )

The J integral Jk is related to Qik through

J Q n dslim ,
117k ik i

0
∫=

( )ε Γ→ ε

where Γε is a closed contour around the crack tip whose outward normal is n. The J integral is path independent, so any
curve that includes the crack tip would yield the same result. But, we take 0ε → since we use an asymptotic solution which
is only valid near the crack tip.

We are interested in J1, which is the energy release rate. It can be computed by using any closed contour around the crack
tip. One such contour consists of an infinitesimally small closed circle that goes to the crack face, as shown in Fig. 4. Another
one is the box contour as in Aravas and Giannakopoulos (2009), also shown in Fig. 4. Let us start with the circular contour for
the Mode III crack. Using the constitutive relations, J1

III has the following relation with w:
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By substituting our asymptotic solution into the integral for J1
III we find that

J lC lC2 1 3 4 . 1191
III

3
2 2 2

3
2πμ α α πμ= ( − )( − ) ≥ ( )

This is a positive quantity, exactly as in LEFM (Rice and Drucker, 1967). In what follows we show that the form of the energy
release rate for Mode I and Mode II cracks in flexoelectric solids is similar to that in piezoelectric materials. The constant C3
above is a function of the material constants and is related to the stress intensity KIII. In the limiting case of α, β, l 0→ we
know that

J
K

lim
2

.
120l, , 0 1

III III
2

μ
=

( )α β →

Thus, if we remove all the SGE and flexoelectric effects from the material, the energy release rate converges to the results
from linear elastic fracture mechanics. Now, for an infinite medium with a semi-infinite crack, we know that far away from
the crack tip the fields should be the same as those of linear elasticity. Hence, by using the path independence of the J
integral we can write
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In the case of 0α → , we get
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which recovers the result of Zhang et al. (1998) using couple stress theory, except that they used a length scale that is half of
our's.

An alternative way of calculating J integral is to use the box contour as in Freund (1972). For planar cracks, this can be
written as
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For Mode I purely insulating (ID) and purely conducting (IE) conditions, the J-integrals are respectively given by
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For Mode II purely insulating (IID) and purely conducting conditions (IIE), they are respectively:
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The above expressions, in the limiting case of α, 0β → , reduce to the results of Aravas and Giannakopoulos (2009).
For Mode D:
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and for Mode E:
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For the mixed modes, Mode I & Mode E we have
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and for Mode II & Mode D:
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There are a few points that we note. First, unlike Mode III, the planar cracks have more intensity constants resulting from
SGE, C11, C12 or C21, C22. Just as in SGE cracks (Aravas and Giannakopoulos, 2009), these intensity factors are needed to
characterize the fracture behavior. For example, C12 can be a good measure of the rotation intensity factor at the crack face.
Second, in the mixed modes, flexoelectricity reduces the energy release rate compared to the SGE crack. We also note that
the form of the above equations is similar to those for piezoelectric materials, where the electric intensity also reduces the
energy release rate of a crack.

5.4. Fracture criterion

The present asymptotic analysis serves as a staring point for the study of crack propagation, but with some limitations. In
our cases, the asymptotics is only valid within a region around the crack tip that is on the order of the flexoelectric length
scale or the SGE length scale. We will apply some simple fracture criteria using the asymptotic solution.

As a well-known example, we recall the classical Griffith postulate regarding a critical energy release rate Gc for the crack
to advance (Griffith, 1921):

J G . 132c1 = ( )

With the equations for various J1 on hand, it is possible to connect flexoelectric parameters at the crack tip to the far field
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quantities that can be measured to calculate J1. For example, in the mixed Mode I & Mode E crack, we have
J f C C K f C C K, , , ,1 11 12 4

I
11 12 E= ( ) = ˜ ( ), so fracture criteria of this type can be written as

f C C K G, , 0. 133c11 12 E
˜ ( ) − = ( )

We recall the above criterion resembles that in piezoelectric materials (Schneider, 2007), except that the function f̃ for
piezoelectrics depends on only two constants, while for flexoelectric materials we have three. In both mixed modes,
flexoelectricity tends to reduce the energy release rate. Hence, with the same Gc it requires more loading/energy to achieve
the minimum condition for the crack to advance/grow if the material is flexoelectric versus when it is not.

Another important criterion for crack propagation depends on the crack opening displacement (COD). According to
Aravas and Giannakopoulos (2009), the small-scale cohesive zone assumed by Barenblatt (1962) can be well modeled by the
cusp-like curve of the COD produced by the SGE asymptotic analysis. Similarly, the flexoelectric COD criterion for crack
propagation can be worked out as

u l C lCOD 2 , 2 . 134c1 11π δ≃ ( ) = = ( )

where δc is some critical crack opening displacement. In the above equation only C11 is explicitly involved. This is in contrast
to the energy release rate criterion in which all three intensity factors are involved. Hence, measuring the COD could be a
more practical way of determining the critical condition for crack growth. Recall that the critical opening for propagation of
the crack is δc which is a material property. As mentioned in Aravas and Giannakopoulos (2009), the critical value C11c could
serve as the measure which determines when crack growth occurs without assuming the length of the cohesive zone. The
parameter C11 in SGE can be calculated through finite element simulation of a finite crack. We expect to do this in the near
future for a flexoelectric solid. But, in order to illustrate the applicability of this idea to flexoelectric materials we adopt a
data set obtained from Tsantidis and Aravas (2011) as a zero order approximation and hold the loading/energy release rate
fixed. We want to see how C11 changes if we change KE. This is shown in Fig. 5. From this figure it is apparent that for larger
KE we need to supply more energy in order to achieve the critical COD at a given r and cause the crack to grow.

Lastly, a flexoelectric material is a dielectric, therefore failure also arises from the electric properties of the material. For
example, since KE or KD is itself a measurable quantity, a simple failure condition could be

K K 135E Ec= ( )

where KEc is a critical intensity factor for the electric field (governed, for example, by the condition for electric breakdown).
Since the electric displacement field is singular near the crack tip we can expect some non-linearity to overwhelm the

linear constitutive laws much like the plastic zone in small-scale yielding. As advocated by Gao et al. (1997), a simple non-
linear model of ferroelectric solids behaves like an elastic–perfectly plastic material where the stress stays the same irre-
spective of strain after reaching a yield stress. For the simple non-linear ferroelectric (Gao et al., 1997) the electric dis-
placement stays the same irrespective of the strain. Just like the plastic zone in small-scale yielding we will have a zone
around the crack in a flexoelectric solid in which the electric displacement is a constant, so that
Fig. 5. The COD profile of mixed Mode I & Mode E cracks with different values of KE. The energy release rate is held fixed. The COD and r are both
normalized against the SGE length scale l. KE is normalized against l2 /πμ ϵ .



Fig. 6. Electric yielded zone near crack tips. (a) Mode I & Mode E crack, (b) Mode II & Mode D crack. In both cases, D 1.0Y˜ = and the crack tip is located at
x¼0. All material constants are the same as those in Figs. 3 and 5. Notice the similarity of the shape of the electric yielded zone with that of the plastic
yielded zone for these cracks.
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where DY
˜ is a non-dimensional yielding electric displacement parameter. Electric yielding of this type has been studied in

piezoelectricity (Gao et al., 1997; Wang, 2000; Schneider, 2007; Kuna, 2010). Similar to the plastic zone in elasticity, this
phenomenon protects the material from singularities in the presence of a crack. The electric yielded zones of mixed modes
cracks are shown in Fig. 6. These zones are associated with phase transition and domain switching (Gao et al., 1997; Wang,
2000), an analysis of which is beyond the scope of this work.
6. Conclusions

In this paper we have analyzed the stress and polarization fields near point defects, dislocations and cracks in flexo-
electric solids. We have shown that flexoelectricity plays an important role in the immediate vicinity of these defects where
there are large strain gradients. We have tried to connect our analysis to experiments wherever possible and have also given
predictions that can be tested. The most interesting of these connections is to experiments on electromechanical phe-
nomena in ice. The electrical behavior of defects in ice had been explained earlier by a “pseudo-piezoelectricity”, which we
now recognize as flexoelectricity. The latter half of the paper is devoted to asymptotic solutions for crack tip fields in
flexoelectric solids. While there is a wealth of literature on cracks in piezoelectrics, little is known about cracks in flexo-
electric materials. Our's is a first attempt to learn something about the nature of singularities near cracks in flexoelectric
solids. The usual r1/2 singularity of the displacement in both LEFM and LPFM is replaced by higher order r3/2 singularity due
to gradient effects. Gradient effects also introduce new intensity factors which could not be computed in our analysis but
may be amenable to computation using finite elements. By employing the J integral, we found that, similar to piezoelectric
solids, electric coupling reduces the energy release rate so that more energy must be supplied in order for a crack to grow.
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Appendix A

A.1. Conventional intensity factors

Mode III cracks in flexoelectric solids are very similar to those in SGE and they inherit the same intensity factors (Zhang
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et al., 1998). We will focus here on the planar cracks. Due to strain gradient and electrostatics we now have more intensity
factors to calculate. Unfortunately, if we use the conventional intensity factors KI, KII, KIV and KE then the expressions for the
energy release rate become too cumbersome. We could use the definitions for intensity factors as in Aravas and Gianna-
kopoulos (2009), but Cij, i j, 1, 2= , and K4

I,II give us a more compact way of presenting the major results. In the following we
will connect these constants to the conventional intensity factors.

For stresses, we follow Aravas (2011) and write

T T T . A.1ij ij ijk k kij k
2
3 ,

1
3 ,σ = − ^ − ^

( )

The stress defined in this manner is called the true stress (Mindlin and Eshel, 1968) and is consistent with couple-stress
theory. Now, for the conventional KI intensity we need s22 at 0θ = . The dominant term for s22 is
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The KI intensity factor is defined as
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We have found that the conventional definition of KI is not useful here just as in SGE (Aravas and Giannakopoulos, 2009).
The reason for this is that the stress is singular as r 3/2− due to strain gradient effects. Hence, we define
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Similarly, we can define the following KII in mode II:
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We find that
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For the electric intensities

⎛
⎝⎜

⎞
⎠⎟K r E r

l
C K K Clim 2 , 0

2 1 2
2 2 A.7E

r 0
1 12 4

I 2
4
I

12π πμ α ν
ν

β β= ( ) =
ϵ

[ − + −
−

− ]
( )→

K r D r l Klim 2 , 0 2 A.8r
IV

0
2 4

IIπ πμ= ( ) = ϵ ( )→
A.2. Bounds for f1 and f2

The energy storage function W is positive definite as a requirement for uniqueness of BVP solutions. Let W W SER = −
where SE is the strain energy, whose positive-definiteness is imposed by classic elasticity:

3 2 0, 0. A.9λ μ μ+ > > ( )
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Since flexoelectricity only has to do with the gradient terms and electric terms, bounds for them should be derived fromWR.
Now, rewrite WR as

W l f f P l S S f S P aP3 2 3 2 2 , A.10R
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where Sij′ is the deviatoric strain tensor and Θ and Sij′ are independent of each other. Hence, we could suppose that S 0jk i,′ =
but Pi and i,Θ are not. Then, to retain the positive definiteness of the above equation, the minimum of WR has to satisfy the
following constraint:
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The above inequality gives the bounds for the constant f f3 21 2| + |:
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Therefore, in general, the thermodynamic constraints for the flexoelectric constants are
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If we were to convert this to non-dimensionalized parameters α, β as defined in the crack mechanics section, and Poisson's
ratio ν, we get
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