Gradientní pružnost

Základní vztahy

Makroposuvy \(u_{i}(x_{i})\) jsou funkcí prostorových souřadnic \(x_{i}\). Mikroposuvy \(u_{i}^{\text{'}}(x_{i},x_{i}^{'})\) závisí na prostorových souřadnicích \(x_{i}\) a jako lineární vektorová funkce na prostorových souřadnicích \(x_{i}^{\text{'}}\), které jsou vázány na mikroobjem, tj.

(1)\[u_{j}^{\text{'}}=x_{k}^{\text{'}}\psi_{kj}(x_{i}).\]

Tedy, tenzor mikrodeformace \(\psi_{ij}\) závisí pouze na souřadnicích \(x_{i}\). Pro deformaci platí standartní vztah

(2)\[\varepsilon_{ij}=\frac{1}{2}\left(\partial_{i}u_{j}+\partial_{j}u_{i}\right),\]

pro mikrodeformaci z (1) plyne

(3)\[\psi_{ij}=\partial_{i}^{'}u_{j}^{'}.\]

Dál se definuje relativní deformace jako rozdíl mezi deformací a mikrodeformací

(4)\[\gamma_{ij}=\partial_{i}u_{j}-\psi_{ij}\]

a gradient mikrodeformace

(5)\[\kappa_{ijk}=\partial_{i}\psi_{jk}.\]

Potenciální energie tedy závisí na všech těchto složkách deformace

(6)\[W=W(\varepsilon_{ij},\gamma_{ij},\kappa_{ijk})\]

a odpovídající tenzory pro Cuachyho, relativní a dvojice napětí

(7)\[\begin{split}\tau_{ij}=\tau_{ji} &= \frac{\partial W}{\partial\varepsilon_{ij}}, \\ \sigma_{ij} &= \frac{\partial W}{\partial\gamma_{ij}}, \\ \mu_{ijk} &= \frac{\partial W}{\partial\kappa_{ijk}}.\end{split}\]

Takže

(8)\[\begin{split}\delta W &= \tau_{ij}\delta\varepsilon_{ij}+\sigma_{ij}\delta\gamma_{ij}+\mu_{ijk}\delta\kappa_{ijk} \\ &= \tau_{ij}\partial_{i}\delta u_{j}+\sigma_{ij}\left(\partial_{i}\delta u_{j} -\delta\psi_{ij}\right)+\mu_{ijk}\partial_{i}\delta\psi_{ijk} \\ &= \partial_{i}\left[\left(\tau_{ij}+\sigma_{ij}\right)\delta u_{j}\right] -\partial_{i}\left(\tau_{ij}+\sigma_{ij}\right)\delta u_{j} -\sigma_{ij}\delta\psi_{ij}+\partial_{i}\left(\mu_{ijk}\delta\psi_{jk}\right)-\partial_{i}\mu_{ijk}\delta\psi_{jk}\end{split}\]

Podle Gauss-Ostrogradského se může psát

(9)\[\begin{split}\delta\mathscr{W} &= \int_{V}\delta W\mathrm{d}V=-\int_{V}\partial_{i}\left(\tau_{ij}+\sigma_{ij}\right)\delta u_{j}\mathrm{d}V -\int_{V}\left(\partial_{i}\mu_{ijk}+\sigma_{jk}\right)\delta\psi_{jk}\mathrm{d}V \\ &+ \int_{S}n_{i}\left(\tau_{ij}+\sigma_{ij}\right)\delta u_{j}\mathrm{d}S +\int_{S}n_{i}\mu_{ijk}\delta\psi_{jk}\mathrm{d}S.\end{split}\]

Práce vnějších sil se může zapsat ve tvaru

(10)\[\delta\mathscr{W}_{1} = \int_{V}f_{j}\delta u_{j}\mathrm{d}V+\int_{V}\Phi_{jk}\delta\psi_{jk}\mathrm{d}V + \int_{S}t_{j}\delta u_{j}\mathrm{d}S+\int_{S}T_{jk}\delta\psi_{jk}\mathrm{d}S,\]

kde \(f_{j}\) a \(t_{j}\) jsou objemová a plošná síla v klasickém pojetí, \(\Phi_{jk}\) a \(T_{jk}\) jsou objemové a plošné dvojice sil. Diagonální prvky \(\Phi_{jk}\) a \(T_{jk}\) jsou bez momentů, nediagonální prvky naopak s momentem. U obou \(\Phi_{jk}\) a \(T_{jk}\) první index značí orientaci ramene momentu dvojice sil a druhý index orientaci sil. U plochy s vnější normálou v kladném směru je síla na kladném konci ramene kladná (jako “kladný” se myslí směr kladné osy souřadnic rovnoběžné s ramenem momentu nebo síly). V případě normály v záporném směru jsou všechny orientace naopak. Z rovnováhy mezi potenciální eneregií a vnějším zatížením plyne

(11)\[\begin{split}\int_{V}\left(\partial_{i}\tau_{ij}+\partial_{i}\sigma_{ij}+f_{j}\right)\delta u_{j}\mathrm{d}V +\int_{V}\left(\partial_{i}\mu_{ijk}+\sigma_{jk}+\Phi_{jk}\right)\delta\psi_{jk}\mathrm{d}V & \\ +\int_{S}\left[t_{j}-n_{i}\left(\tau_{ij}+\sigma_{ij}\right)\right]\delta u_{j}\mathrm{d}S +\int_{S}\left(T_{jk}-n_{i}\mu_{ijk}\right)\delta\psi_{jk}\mathrm{d}S &=0.\end{split}\]

Odtud plyne soustava rovnic rovnováhy

(12)\[\begin{split}\partial_{i}\left(\tau_{ij}+\sigma_{ij}\right)+f_{j} &=0, \\ \partial_{i}\mu_{ijk}+\sigma_{jk}+\Phi_{jk} &=0\end{split}\]

a Neumannovy okrajové podmínky

(13)\[\begin{split}t_{j} &= n_{i}\left(\tau_{ij}+\sigma_{ij}\right), \\ T_{jk} &= n_{i}\mu_{ijk}.\end{split}\]

Z pohledu konstitutivních rovnic je potenciální energie kvadratickou formou proměnných \(\varepsilon_{ij}\), \(\gamma_{ij}\) a \(\kappa_{ijk}\),

(14)\[\begin{split}W &= \frac{1}{2}c_{ijkl}\varepsilon_{ij}\varepsilon_{kl}+\frac{1}{2}b_{ijkl}\gamma_{ij}\gamma_{kl} +\frac{1}{2}a_{ijklmn}\kappa_{ijk}\kappa_{lmnk} \\ &+ d_{ijklm}\gamma_{ij}\kappa_{klm}+f_{ijklm}\kappa_{ijk}\varepsilon_{lm}+g_{ijkl}\gamma_{ij}\varepsilon_{kl}.\end{split}\]

Z toho je \(\frac{1}{2}\times42\times43=903\) nezávislých koeficientů. V případě isotropního materiálu dochází k značné redukci koeficientů,

(15)\[\begin{split}W &= \frac{1}{2}\lambda\varepsilon_{ii}\varepsilon_{jj}+\mu\varepsilon_{ij}\varepsilon_{ij} \\ &+ \frac{1}{2}b_{1}\gamma_{ii}\gamma_{jj}+\frac{1}{2}b_{2}\gamma_{ij}\gamma_{ij} +\frac{1}{2}b_{3}\gamma_{ij}\gamma_{ji} \\ &+ g_{1}\gamma_{ii}\varepsilon_{jj}+g_{2}\left(\gamma_{ij}+\gamma_{ji}\right)\varepsilon_{ij} \\ &+ a_{1}\kappa_{iik}\kappa_{kjj}+a_{2}\kappa_{iik}\kappa_{jkj}+\frac{1}{2}a_{3}\kappa_{iik}\kappa_{jjk} +\frac{1}{2}a_{4}\kappa_{ijj}\kappa_{ikk}+a_{5}\kappa_{ijj}\kappa_{kik} \\ &+ \frac{1}{2}a_{8}\kappa_{iji}\kappa_{kjk} +\frac{1}{2}a_{10}\kappa_{ijk}\kappa_{ijk}+a_{11}\kappa_{ijk}\kappa_{jki} +\frac{1}{2}a_{13}\kappa_{ijk}\kappa_{ikj} \\ &+ \frac{1}{2}a_{14}\kappa_{ijk}\kappa_{jik} +\frac{1}{2}a_{15}\kappa_{ijk}\kappa_{kji}.\end{split}\]

Odtud pro jednotlivá napětí platí

(16)\[\begin{split}\tau_{pq} &= \lambda\delta_{pr}\varepsilon_{ii}+2\mu\varepsilon_{pq}+g_{1}\delta_{pq}\gamma_{ii} +g_{2}\left(\gamma_{pq}+\gamma_{qp}\right), \\ \sigma_{pq} &= b_{1}\delta_{pq}\gamma_{ii}+b_{2}\gamma_{pq}+b_{3}\gamma_{qp}+g_{1}\delta_{pq}\varepsilon_{ii} +2g_{2}\varepsilon_{pq}, \\ \mu_{pqr} &= a_{1}\left(\delta_{qr}\kappa_{iip}+\delta_{pq}\kappa_{rii}\right) +a_{2}\left(\delta_{pr}\kappa_{iiq}+\delta_{pq}\kappa_{iri}\right) +a_{3}\delta_{pq}\kappa_{iir}+a_{4}\delta_{qr}\kappa_{pii} \\ &+ a_{5}\left(\delta_{qr}\kappa_{ipi}+\delta_{qr}\kappa_{ipi}\right) +a_{8}\delta_{pr}\kappa_{iqi}+a_{10}\kappa_{pqr} \\ &+ a_{11}\left(\kappa_{qrp}+\kappa_{rpq}\right)+a_{13}\kappa_{prq} +a_{14}\kappa_{qpr}+a_{15}\kappa_{rqp}.\end{split}\]

Zjednodušené formy I a II

Forma I

Za jistých předpokladů lze brát úvahu následující

(17)\[\sigma_{(ij)}=0,\]
(18)\[b_{2}-b_{3}\rightarrow\infty,\quad\gamma_{[ij]}\rightarrow0,\]

kde indexy v kulatých resp. hranatých závorkách symbolizují symterické resp. antisymetrické části tenzorů. Takže

(19)\[\begin{split}\tau_{pq} &= \lambda\delta_{pr}\varepsilon_{ii}+2\mu\varepsilon_{pq}+g_{1}\delta_{pq}\gamma_{ii}+2g_{2}\gamma_{(pq)}, \\\end{split}\]
(20)\[\begin{split}\sigma_{(pq)} &= \frac{1}{2}\left(\sigma_{pq}+\sigma_{qp}\right) \\ &= \frac{1}{2}\left(g_{1}\delta_{pq}\varepsilon_{ii}+2g_{2}\varepsilon_{pq} +b_{1}\delta_{pq}\gamma_{ii}+b_{2}\gamma_{pq}+b_{3}\gamma_{qp}\right. \\ &\left. +g_{1}\delta_{qp}\varepsilon_{ii}+2g_{2}\varepsilon_{qp}+b_{1}\delta_{qp}\gamma_{ii} +b_{2}\gamma_{qp}+b_{3}\gamma_{pq}\right) \\ &= g_{1}\delta_{pq}\varepsilon_{ii}+2g_{2}\varepsilon_{pq}+b_{1}\delta_{pq}\gamma_{ii} +\left(b_{2}+b_{3}\right)\gamma_{(pq)},\end{split}\]
(21)\[\begin{split}\sigma_{[pq]} &= \frac{1}{2}\left(\sigma_{pq}-\sigma_{qp}\right) \\ &= \frac{1}{2}\left(g_{1}\delta_{pq}\varepsilon_{ii}+2g_{2}\varepsilon_{pq} +b_{1}\delta_{pq}\gamma_{ii}+b_{2}\gamma_{pq}+b_{3}\gamma_{qp}\right. \\ &\left. -g_{1}\delta_{qp}\varepsilon_{ii}-2g_{2}\varepsilon_{qp}-b_{1}\delta_{qp}\gamma_{ii} -b_{2}\gamma_{qp}-b_{3}\gamma_{pq}\right) \\ &= \left(b_{2}-b_{3}\right)\gamma_{[pq]}.\end{split}\]

Podle (18) a (21) je \(\sigma_{[pq]}\) neurčitý výraz a z podmínky (17) a rovnic (20) pro \(p=q=1,2\) a \(3\) plyne

(22)\[\begin{split}0 &= g_{1}\varepsilon_{ii}+2g_{2}\varepsilon_{11}+b_{1}\gamma_{ii} +\left(b_{2}+b_{3}\right)\frac{1}{2}\left(\gamma_{11}+\gamma_{11}\right), \\ 0 &= g_{1}\varepsilon_{ii}+2g_{2}\varepsilon_{22}+b_{1}\gamma_{ii} +\left(b_{2}+b_{3}\right)\frac{1}{2}\left(\gamma_{22}+\gamma_{22}\right), \\ 0 &= g_{1}\varepsilon_{ii}+2g_{2}\varepsilon_{33}+b_{1}\gamma_{ii} +\left(b_{2}+b_{3}\right)\frac{1}{2}\left(\gamma_{33}+\gamma_{33}\right).\end{split}\]

Sečtením rovnic se dostane

(23)\[0=3g_{1}\varepsilon_{ii}+2g_{2}\varepsilon_{ii}+3b_{1}\gamma_{ii}+\left(b_{2}+b_{3}\right)\gamma_{ii},\]

odkud plyne

(24)\[\gamma_{ii}=\frac{3g_{1}+2g_{2}}{3b_{1}+b_{2}+b_{3}}\varepsilon_{ii}.\]

Dosazením tohoto výrazu zpět do (20) se dostane

(25)\[\gamma_{(pq)}=-\alpha\delta_{pq}\varepsilon_{ii}+\left(1-\beta\right)\varepsilon_{pq},\]

kde

(26)\[\alpha=\frac{1}{b_{2}+b_{3}}\left[g_{1}-\frac{b_{1}\left(3g_{1}+2g_{2}\right)}{3b_{1}+b_{2}+b_{3}}\right] ,\quad\beta=1+\frac{2g_{2}}{b_{2}+b_{3}}.\]

Protože

(27)\[\gamma_{pq}=\partial_{p}u_{q}-\psi_{pq}\]

platí pro symetrickou a antisymetrickou část \(\gamma_{pq}\) následující

(28)\[\gamma_{(pq)}=\varepsilon_{pq}-\psi_{(pq)}\quad\mathrm{a\quad}\gamma_{[pq]}=\omega_{pq}-\psi_{[pq]}.\]

Podle druhé limity v (18) a (25) platí

(29)\[\psi_{[pq]}=\omega_{pq}\]

a

(30)\[\psi_{(pq)}=\alpha\delta_{pq}\varepsilon_{ii}+\beta\varepsilon_{pq}.\]

Z definice gradientu mikrodeformace

(31)\[\kappa_{ijk}=\partial_{i}\psi_{jk}=\partial_{i}\psi_{(jk)}+\partial_{i}\psi_{[jk]}\]

plyne

(32)\[\begin{split}\kappa_{ijk}\rightarrow & \alpha\delta_{jk}\partial_{i}\varepsilon_{ll}+\beta\partial_{i}\varepsilon_{jk} +\partial_{i}\omega_{jk} \\ &= \alpha\delta_{jk}\partial_{i}\partial_{l}u_{l} +\beta\frac{1}{2}\partial_{i}\left(\partial_{j}u_{k}+\partial_{k}u_{j}\right) +\frac{1}{2}\partial_{i}\left(\partial_{j}u_{k}-\partial_{k}u_{j}\right),\end{split}\]

nebo-li

(33)\[\kappa_{ijk}\rightarrow\alpha\delta_{jk}\tilde{\kappa}_{ill}\delta_{jk}+\frac{1}{2}\left(1+\beta\right)\tilde{\kappa}_{ijk} +\frac{1}{2}\left(1-\beta\right)\tilde{\kappa}_{ikj},\]

kde

(34)\[\tilde{\kappa}_{ijk}\equiv\partial_{i}\partial_{j}u_{k}=\tilde{\kappa}_{jik}.\]

Dosazením vztahů pro \(\kappa_{ijk}\), \(\gamma_{ij}\), (17) a (18) do (15) se dostane

(35)\[\begin{split}W\rightarrow\tilde{W} &= \frac{1}{2}\tilde{\lambda}\varepsilon_{ii}\varepsilon_{jj} +\tilde{\mu}\varepsilon_{ij}\varepsilon_{ij}+\tilde{a}_{1}\tilde{\kappa}_{iik}\tilde{\kappa}_{kjj} +\tilde{a}_{2}\tilde{\kappa}_{ijj}\tilde{\kappa}_{ikk}+ \\ &+ \tilde{a}_{3}\tilde{\kappa}_{iik}\tilde{\kappa}_{jjk} +\tilde{a}_{4}\tilde{\kappa}_{ijk}\tilde{\kappa}_{ijk} +\tilde{a}_{5}\tilde{\kappa}_{ijk}\tilde{\kappa}_{kji},\end{split}\]

kde

(36)\[\begin{split}\tilde{\lambda}+2\tilde{\mu} &= \lambda+2\mu-\frac{8g_{2}^{2}}{3\left(b_{2}+b_{3}\right)} -\frac{\left(3g_{1}+2g_{2}\right)^{2}}{2\left(3b_{1}+b_{2}+b_{3}\right)}, \\ \tilde{\mu} &= \mu-\frac{2g_{2}^{2}}{b_{2}+b_{3}}.\end{split}\]

Ostatní členy jsou děsná prasečina, viz. [1]. Můžou se tedy nadefinovat nová napětí

(37)\[\tilde{\tau}_{ij}=\frac{\partial\tilde{W}}{\partial\varepsilon_{ij}}=\tilde{\tau}_{ji},\]
(38)\[\tilde{\mu}_{ijk}=\frac{\partial\tilde{W}}{\partial\tilde{\kappa}_{ijk}}=\tilde{\mu}_{jik}.\]

V dalším bude třeba zavést Levi-Civitův symbol

(39)\[\begin{split}\varepsilon_{ijk}= \begin{cases} 1 & \mathrm{pro}\,(i,j,k)=(1,2,3),(2,3,1)\,\mathrm{a\,}(3,1,2),\\ -1 & \mathrm{pro}\,(i,j,l)=(3,2,1),(1,3,2)\,\mathrm{a\,}(2,1,3),\\ 0 & \mathrm{jinak.} \end{cases}\end{split}\]

Důležitý je vztah

(40)\[\varepsilon_{ijk}\varepsilon_{imn}=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km}\]

nebo po sudém přehození indexů

(41)\[\varepsilon_{jki}\varepsilon_{imn}=\delta_{jm}\delta_{kn}-\delta_{jn}\delta_{km}.\]

V dalším je totiž důležitý operátor (derivace ve směru tečny ke křivce s normálou \(n_{j}\) - povrchový gradient)

(42)\[D_{j}\equiv\left(\delta_{jl}-n_{j}n_{l}\right)\partial_{l}\]

a skalární vztah

(43)\[D_{j}v_{j}=\left(\delta_{jl}-n_{j}n_{l}\right)\partial_{l}v_{j}=\partial_{j}v_{j}-n_{j}n_{l}\partial_{l}v_{j},\]

kde \(v_{j}\) je vektor kolineární s normálou \(n_{j}\), tj. platí

(44)\[v_{j}=n_{k}v_{k}n_{j}.\]

Výraz \(n_{k}v_{k}\) je tedy vlastně velikost vektoru \(v_{j}\). Nejdříve první výraz na pravé straně roznásobíme \(n_{l}n_{l}\), což je jednička (velikost normály)

(45)\[D_{j}v_{j}=n_{l}n_{l}\partial_{j}v_{j}-n_{j}n_{l}\partial_{l}v_{j}\]

a pak od pravé strany odečteme výraz \(n_{l}v_{j}\partial_{j}n_{l}\), který i následně přičteme

(46)\[D_{j}v_{j}=n_{l}n_{l}\partial_{j}v_{j}-n_{j}n_{l}\partial_{l}v_{j}-n_{l}v_{j}\partial_{j}n_{l}+n_{l}v_{j}\partial_{j}n_{l}.\]

Do třetího výrazu na pravé straně se místo \(v_{j}\) dosadí (44) a tím se dostane

(47)\[D_{j}v_{j}=n_{l}n_{l}\partial_{j}v_{j}-n_{j}n_{l}\partial_{l}v_{j}-n_{k}v_{k}n_{l}n_{j}\partial_{j}n_{l} +n_{l}v_{j}\partial_{j}n_{l}.\]

Pokračujeme v masáži. Předchozí výraz přeuspořádáme

(48)\[D_{j}v_{j}=\left(n_{l}v_{j}\partial_{j}n_{l}+n_{l}n_{l}\partial_{j}v_{j}-n_{j}n_{l}\partial_{l}v_{j}\right) -n_{k}v_{k}n_{l}n_{j}\partial_{j}n_{l}.\]

Poslední přičtení a odečtení, tentokrát výrazu \(n_{j}v_{j}\partial_{l}n_{l}\), tedy

(49)\[D_{j}v_{j}=\left(n_{l}v_{j}\partial_{j}n_{l}+n_{l}n_{l}\partial_{j}v_{j} -n_{j}v_{j}\partial_{l}n_{l}-n_{j}n_{l}\partial_{l}v_{j}\right) +\left(n_{j}v_{j}\partial_{l}n_{l}-n_{k}v_{k}n_{l}n_{j}\partial_{j}n_{l}\right).\]

Závorky lze přepsat následovně

(50)\[D_{j}v_{j}=\left[n_{l}\partial_{j}\left(n_{l}v_{j}\right)-n_{j}\partial_{l}\left(n_{l}v_{j}\right)\right] +n_{j}v_{j}\left(\partial_{l}n_{l}-n_{l}n_{k}\partial_{k}n_{l}\right).\]

Může se využít Kroneckerovo \(\delta_{ij}\),

(51)\[D_{j}v_{j}=\left[n_{l}\delta_{pj}\partial_{p}\left(n_{l}v_{j}\right) -n_{j}\delta_{pl}\partial_{p}\left(n_{l}v_{j}\right)\right] +n_{j}v_{j}\left(\delta_{lk}\partial_{k}n_{l}-n_{l}n_{k}\partial_{k}n_{l}\right),\]

které umožní vytknout výrazy s parciálními derivacemi,

(52)\[D_{j}v_{j}=\left[n_{q}\delta_{ql}\delta_{pj}-n_{q}\delta_{qj}\delta_{pl}\right] \partial_{p}\left(n_{l}v_{j}\right)+n_{j}v_{j}\left(\delta_{lk}-n_{l}n_{k}\right)\partial_{k}n_{l}.\]

Dalším použitím \(\delta_{ij}\) lze z první závorky vytknout normálu

(53)\[D_{j}v_{j}=n_{q}\left[\delta_{ql}\delta_{pj}-\delta_{qj}\delta_{pl}\right] \partial_{p}\left(n_{l}v_{j}\right)+n_{j}v_{j}\left(\delta_{lk}-n_{l}n_{k}\right)\partial_{k}n_{l}.\]

Podle (41) a (43) se pak dostane

(54)\[D_{j}v_{j}=n_{q}\varepsilon_{qpm}\varepsilon_{mlj}\partial_{p}\left(n_{l}v_{j}\right)+n_{j}v_{j}\left(D_{l}n_{l}\right).\]

Tuhle šílenost odvodil [2] a později vzorec (54) využijeme. Na základě definice napětí v (37), (38) a potenciálu (35) platí

(55)\[\begin{split}\tilde{\tau}_{pq} &= \tilde{\lambda}\delta_{pq}\varepsilon_{ii}+2\tilde{\mu}\varepsilon_{pq}, \\ \tilde{\mu}_{pqr} &= \frac{1}{2}\tilde{a}_{1}\left(\tilde{\kappa}_{iip}\delta_{qr} +2\tilde{\kappa}_{rii}\delta_{pq}+\tilde{\kappa}_{iiq}\delta_{pr}\right) +\tilde{a}_{2}\left(\tilde{\kappa}_{pii}\delta_{qr}+\tilde{\kappa}_{qii}\delta_{pr}\right) \\ &= +2\tilde{a}_{3}\tilde{\kappa}_{iir}\delta_{pq}+2\tilde{a}_{4}\tilde{\kappa}_{pqr} +\tilde{a}_{5}\left(\tilde{\kappa}_{rqp}+\tilde{\kappa}_{rpq}\right).\end{split}\]

Variace hustoty potenciální energie je

(56)\[\begin{split}\delta\tilde{W} &= \tilde{\tau}_{ij}\delta\varepsilon_{ij}+\tilde{\mu}_{ijk}\delta\tilde{\kappa}_{ijk} \\ &= \tilde{\tau}_{ij}\partial_{i}\delta u_{j}+\tilde{\mu}_{ijk}\partial_{i}\partial_{j}\delta u{}_{k} \\ &= \partial_{j}\left[\left(\tilde{\tau}_{jk}-\partial_{i}\tilde{\mu}_{ijk}\right)\delta u_{k}\right] -\partial_{j}\left(\tilde{\tau}_{jk}-\partial_{i}\tilde{\mu_{ijk}}\right)\delta u_{k} +\partial_{i}\left(\tilde{\mu}_{ijk}\partial_{j}\delta u_{k}\right).\end{split}\]

Takže

(57)\[\int_{V}\delta\tilde{W}\mathrm{d}V=\int_{S}n_{j}\left(\tilde{\tau}_{jk}-\partial_{i}\tilde{\mu}_{ijk}\right) \delta u_{k}\mathrm{d}S-\int_{V}\partial_{j} \left(\tilde{\tau}_{jk}-\partial_{i}\tilde{\mu}_{ijk}\right) \delta u_{k}\mathrm{d}V+\int_{S}n_{i}\tilde{\mu}_{ijk}\partial_{j}\delta u_{k}\mathrm{d}S.\]

Nyní je třeba se zbavit derivace \(\partial_{j}\) ve výrazu \(\partial_{j}\delta u_{k}\) třetího integrálu, protože je tato derivace závislá na variaci \(\delta u_{k}\). Nezávislá je pouze její normálová složka \(n_{i}\partial_{i}\delta u_{k}\) (povrchová síla - Neumennova okrajová podmínka). Na to odstranění se musí jít oklikou, takže nejdříve se třetí integrand přepíše do složitějšího tvaru

(58)\[n_{i}\tilde{\mu}_{ijk}\partial_{j}\delta u_{k}=n_{i}\tilde{\mu}_{ijk}D_{j}\delta u_{k}+n_{i}\tilde{\mu}_{ijk}n_{j}D\delta u_{k},\]

kde \(D_{j}\) je definováno výše vztahem (42) a

(59)\[D\equiv n_{l}\partial_{l}.\]

První výraz na levé straně (58) se může dále rozepsat

(60)\[n_{i}\tilde{\mu}_{ijk}D_{j}\delta u_{k}=D_{j}\left(n_{i}\tilde{\mu}_{ijk}\delta u_{k}\right) -n_{i}D_{j}\tilde{\mu}_{ijk}\delta u_{k} -\left(D_{j}n_{i}\right)\tilde{\mu}_{ijk}\delta u_{k}.\]

Poslední dva výrazy v (60) již neobsahují derivaci \(\delta u_{k}\). První výraz se může rozepsat podle (54), kde

(61)\[v_{j}=n_{i}\tilde{\mu}_{ijk}\delta u_{k},\]
(62)\[D_{j}\left(n_{i}\tilde{\mu}_{ijk}\delta u_{k}\right)=\left(D_{l}n_{l}\right)n_{j}n_{i}\tilde{\mu}_{ijk}\delta u_{k} +n_{q}\varepsilon_{qpm}\partial_{p} \left(\varepsilon_{mlj}n_{l}n_{i}\tilde{\mu}_{ijk}\delta u_{k}\right).\]

Podle Stokesovy věty je integrál z druhého výrazu na pravé straně (62) přes hladkou plochu nulový. Jestliže však tuto plochu rozdělíme na dvě, \(S_{1}\) a \(S_{2}\), křivkou \(C\), Stokes nám dá výraz

(63)\[\int_{S}n_{q}\varepsilon_{qpm}\partial_{p}\left(\varepsilon_{mlj}n_{l}n_{i}\tilde{\mu}_{ijk}\delta u_{k}\right)\mathrm{d}S =\oint_{C}\big[\!\big[ s_{m}\varepsilon_{mlj}n_{l}n_{i}\tilde{\mu}_{ijk}\big]\!\big] \delta u_{k}\mathrm{d}s =\oint_{C}\big[\!\big[ n_{i}m_{j}\tilde{\mu}_{ijk}\big]\!\big] \delta u_{k}\mathrm{d}s,\]

kde \(m_{j}=\varepsilon_{mlj}s_{m}n_{l}\) a \(s_{m}\) jsou složky jednotkového tečného vektoru a binormálového vektoru ke křivce \(C\). Dvojité hranaté závorky \([\![.]\!]\) značí, že hodnota uvitř je rozdílem mezi hodnotami na ploše \(S_{1}\) a \(S_{2}\). Takže suma sumárum, z výsledků (58), (60), (62) a (63) se pro \(\delta\tilde{W}\) dostane

(64)\[\begin{split}\int_{V}\delta\tilde{W}\mathrm{d}V &= -\int_{V}\partial_{j}\left(\tilde{\tau}_{jk}-\partial_{i}\tilde{\mu}_{ijk}\right) \delta u_{k}\mathrm{d}V \\ &+ \int_{S}\left[n_{j}\tilde{\tau}_{jk}-n_{j}\partial_{i}\tilde{\mu}_{ijk} +\left(D_{l}n_{l}\right)n_{j}n_{i}\tilde{\mu}_{ijk}-n_{i}D_{j}\tilde{\mu}_{ijk} -\left(D_{j}n_{i}\right)\tilde{\mu}_{ijk}\right]\delta u_{k}\mathrm{d}S \\ &+ \int_{S}n_{i}n_{j}\tilde{\mu}_{ijk}D\delta u_{k}\mathrm{d}S +\oint_{C}\big[\!\big[n_{i}m_{j}\tilde{\mu}_{ijk}\big]\!\big]\delta u_{k}\mathrm{d}s.\end{split}\]

Pro \(n_{j}\partial_{i}\tilde{\mu}_{ijk}\) platí

(65)\[n_{j}\partial_{i}\tilde{\mu}_{ijk}=n_{j}\left(\delta_{il}-n_{i}n_{l}\right)\partial_{l}\tilde{\mu}_{ijk} +n_{j}n_{i}n_{l}\partial_{l}\tilde{\mu}_{ijk}=n_{j}D_{i}\tilde{\mu}_{ijk}+n_{j}n_{i}D\tilde{\mu}_{ijk}.\]

Pak

(66)\[\begin{split}\int_{V}\delta\tilde{W}\mathrm{d}V &= -\int_{V}\partial_{j}\left(\tilde{\tau}_{jk}-\partial_{i}\tilde{\mu}_{ijk}\right) \delta u_{k}\mathrm{d}V \\ &+ \int_{S}\left[n_{j}\tilde{\tau}_{jk}-n_{j}n_{i}D\tilde{\mu}_{ijk} -2n_{j}D_{i}\tilde{\mu}_{ijk} +\left(n_{i}n_{j}D_{l}n_{l}-D_{j}n_{i}\right)\tilde{\mu}_{ijk}\right] \delta u_{k}\mathrm{d}S \\ &+ \int_{S}n_{i}n_{j}\tilde{\mu}_{ijk}D\delta u_{k}\mathrm{d}S +\oint_{C}\big[\!\big[n_{i}m_{j}\tilde{\mu}_{ijk}\big]\!\big]\delta u_{k}\mathrm{d}s.\end{split}\]

Na základě tvaru variace potenciální energie vyjádříme variaci práce vnějších sil

(67)\[\delta\mathscr{W}_{1}=\int_{V}F_{k}\delta u_{k}\mathrm{d}V+\int_{S}\tilde{P}_{k}\delta u_{k}\mathrm{d}S +\int_{S}\tilde{R}_{k}D\delta u_{k}\mathrm{d}S+\oint_{C}\tilde{E}_{k}\delta u_{k}\mathrm{d}s.\]

Z rovnosti

(68)\[\delta\mathscr{W}=\int_{V}\delta\tilde{W}\mathrm{d}V=\delta\mathscr{W}_{1}\]

plynou rovnice rovnováhy a okrajové podmínky

(69)\[\begin{split}\partial_{j}\left(\tilde{\tau}_{jk}-\partial_{i}\tilde{\mu}_{ijk}\right)+F_{k} &= 0, \\ n_{j}\tilde{\tau}_{jk}-n_{j}n_{i}D\tilde{\mu}_{ijk}-2n_{j}D_{i}\tilde{\mu}_{ijk} +\left(n_{i}n_{j}D_{l}n_{l}-D_{j}n_{i}\right)\tilde{\mu}_{ijk} &= \tilde{P}_{k}, \\ n_{i}n_{j}\tilde{\mu}_{ijk} &= \tilde{R}_{k}, \\ \big[\!\big[ n_{i}m_{j}\tilde{\mu}_{ijk}\big]\!\big] &= \tilde{E}_{k}.\end{split}\]

Forma II

Derivace \(\partial_{i}\partial_{j}u_{k}\) může být vyjádřena jako tenzor

(70)\[\hat{\kappa}_{ijk}\equiv\partial_{i}\varepsilon_{jk}= \frac{1}{2}\left(\partial_{i}\partial_{j}u_{k}+\partial_{i}\partial_{k}u_{j}\right)=\hat{\kappa}_{ijk}.\]

Hustotu potenciální energie lze vyjádřit pomocí hustoty potenciální energie popsané v části Forma I, ale nahrazením \(\tilde{\kappa}_{ijk}\) výrazem

(71)\[\tilde{\kappa}_{ijk}=\hat{\kappa}_{ijk}+\hat{\kappa}_{jki}-\hat{\kappa}_{kij}.\]

Tím se dostane

(72)\[W\rightarrow\hat{W}=\frac{1}{2}\tilde{\lambda}\varepsilon_{ii}\varepsilon_{jj}+\tilde{\mu}\varepsilon_{ij}\varepsilon_{ij} +\hat{a}_{1}\hat{\kappa}{}_{iik}\hat{\kappa}_{kjj}+\hat{a}_{2}\hat{\kappa}_{ijj}\hat{\kappa}_{ikk} +\hat{a}_{3}\hat{\kappa}_{iik}\hat{\kappa}_{jjk}+\hat{a}_{4}\hat{\kappa}_{ijk}\hat{\kappa}_{ijk} +\hat{a}_{5}\hat{\kappa}_{ijk}\hat{\kappa}_{kji},\]

kde

(73)\[\begin{split}\hat{a}_{1} &= 2\tilde{a}_{1}-4\tilde{a}_{3}, \\ \hat{a}_{2} &= -\tilde{a}_{1}+\tilde{a}_{2}+\tilde{a}_{3}, \\ \hat{a}_{3} &= 4\tilde{a}_{3}, \\ \hat{a}_{4} &= 3\tilde{a}_{4}-\tilde{a}_{5}, \\ \hat{a}_{5} &= -2\tilde{a}_{4}+2\tilde{a}_{5}.\end{split}\]

Definice nových napětí

(74)\[\hat{\tau}_{ij}=\frac{\partial\hat{W}}{\partial\varepsilon_{ij}}=\hat{\tau}_{ji},\]
(75)\[\hat{\mu}_{ijk}=\frac{\partial\hat{W}}{\partial\hat{\kappa}_{ijk}}=\hat{\mu}_{ikj}\]

a

(76)\[\begin{split}\hat{\tau}_{pq} &= \tilde{\lambda}\delta_{pq}\varepsilon_{ii}+2\tilde{\mu}\varepsilon_{pq}, \\ \hat{\mu}_{pqr} &= \frac{1}{2}\hat{a}_{1}\left(\delta_{pq}\hat{\kappa}_{rii}+2\delta_{qr}\hat{\kappa}_{iip} +\delta_{rp}\hat{\kappa}_{qii}\right)+2\hat{a}_{2}\delta_{qr}\hat{\kappa}_{pii} \\ &+ \hat{a}_{3}\left(\delta_{pq}\hat{\kappa}_{iir}+\delta_{pr}\hat{\kappa}_{iiq}\right) +2\hat{a}_{4}\hat{\kappa}_{pqr}+\hat{a}_{5}\left(\hat{\kappa}_{rpq}+\hat{\kappa}_{qrp}\right).\end{split}\]

Variace hustoty potenciální energie

(77)\[\begin{split}\delta\hat{W} &= \hat{\tau}_{ij}\delta\varepsilon_{ij}+\hat{\mu}_{ijk}\delta\hat{\kappa}_{ijk} =\hat{\tau}_{ij}\partial_{i}\delta u_{j}+\hat{\mu}_{ijk}\partial_{i}\partial_{j}\delta u_{k} \\ &= \partial_{j}\left[\left(\hat{\tau}_{ij}-\partial_{i}\hat{\mu}_{ijk}\right)\delta u_{k}\right] -\partial_{j}\left(\hat{\tau}_{jk}-\partial_{i}\hat{\mu}_{ijk}\right)\delta u_{k} +\partial_{i}\left(\hat{\mu}_{ijk}\partial_{j}\delta u_{k}\right).\end{split}\]

Variace potenciálu je uplně stejná jako v případě formy I, viz část Forma I, takže se stejným postupem dostanou stejné rovnice rovnováhy a okrajové podmínky kromě výrazu \(2n_{j}D_{i}\), který je nahrazen výrazem \(n_{j}D_{i}+n_{i}D_{j}\),

(78)\[\partial_{j}\left(\hat{\tau}_{jk}-\partial_{i}\hat{\mu}_{ijk}\right)+F_{k}=0,\]
(79)\[n_{j}\hat{\tau}_{jk}-n_{j}n_{i}D\hat{\mu}_{ijk}-\left(n_{j}D_{i}\hat{\mu}_{ijk}+n_{i}D_{j}\hat{\mu}_{ijk}\right) +\left(n_{i}n_{j}D_{l}n_{l}-D_{j}n_{i}\right)\hat{\mu}_{ijk}=\hat{P}_{k},\]
(80)\[n_{i}n_{j}\hat{\mu}_{ijk}=\hat{R}_{k},\]
(81)\[\big[\!\big[ n_{i}m_{j}\hat{\mu}_{ijk}\big]\!\big] =\hat{E}_{k}.\]

Gradientní pružnost

Gradientní elasticita vychází z Mindlinovy formy II (detaily někdy jindy, viz také Forma II), a spočívá ve zjednodušení tvaru hustoty potenciální energie,

(82)\[W=\frac{1}{2}\lambda\varepsilon_{pp}\varepsilon_{qq}+\mu\varepsilon_{ij}\varepsilon_{ij} +c\frac{1}{2}\lambda\left(\partial_{r}\varepsilon_{pp}\right)\left(\partial_{r}\varepsilon_{qq}\right) +c\mu\left(\partial_{r}\varepsilon_{pq}\right)\left(\partial_{r}\varepsilon_{pq}\right),\]

kde \(c\) gradientní koeficient s rozměry \([d\acute{e}lka]^{2}\). Podle (74) a (75) platí

(83)\[\tau_{pq}=\frac{\partial W}{\partial\varepsilon_{pq}}=\lambda\delta_{pq}\varepsilon_{ii}+2\mu\varepsilon_{pq},\]
(84)\[m_{rpq}=\frac{\partial W}{\partial\left(\partial_{r}\varepsilon_{pq}\right)} =c\partial_{r}\left(\lambda\delta_{pq}\varepsilon_{ii}+2\mu\varepsilon_{pq}\right)=c\partial_{r}\tau_{pq}\]

a při zanedbání objemových sil \(F_{k}\) a podle (65) a (78)(81)

(85)\[\partial_{p}\left(\tau_{pq}-\partial_{r}m_{rpq}\right)=0,\]
(86)\[n_{p}\left(\tau_{pq}-\partial_{r}m_{rpq}\right) -D_{p}\left(n_{r}m_{rpq}\right)+\left(D_{j}n_{j}\right)n_{r}n_{p}m_{rpq}=P_{q},\]
(87)\[n_{r}n_{p}m_{rpq}=R_{q}.\]

Rovinná gradientní pružnost

Hookeův zákon pro izotropní materiál v rovinných kartézských souřadnicích má podle (83) a (84) tvar,

(88)\[\tau_{xx}=\left(\lambda+2\mu\right)\varepsilon_{xx}+\lambda\varepsilon_{yy},\]
(89)\[\tau_{xy}=2\mu\varepsilon_{xy},\]
(90)\[\tau_{yy}=\left(\lambda+2\mu\right)\varepsilon_{yy}+\lambda\varepsilon_{xx},\]
(91)\[\begin{split}m_{xxx} &= c\partial_{x}\left[\left(\lambda+2\mu\right)\varepsilon_{xx}+\lambda\varepsilon_{yy}\right], \\ m_{xxy} &= 2c\mu\partial_{x}\varepsilon_{xy}, \\ m_{xyy} &= c\partial_{x}\left[\left(\lambda+2\mu\right)\varepsilon_{yy}+\lambda\varepsilon_{xx}\right], \\ m_{yxx} &= c\partial_{y}\left[\left(\lambda+2\mu\right)\varepsilon_{xx}+\lambda\varepsilon_{yy}\right], \\ m_{yxy} &= 2c\mu\partial_{y}\varepsilon_{xy}, \\ m_{yyy} &= c\partial_{y}\left[\left(\lambda+2\mu\right)\varepsilon_{yy}+\lambda\varepsilon_{xx}\right]. \\\end{split}\]

To stejné platí v polárních souřadnicích. Ukázka odvození vztahů pro napětí \(\tau_{ij}\) je v části Vektorová analýza. Takže platí

(92)\[\begin{split}\tau_{rr} &= \left(\lambda+2\mu\right)\varepsilon_{rr}+\lambda\varepsilon_{\varphi\varphi}, \\ \tau_{r\varphi} &= 2\mu\varepsilon_{r\varphi}, \\ \tau_{\varphi\varphi} &= \left(\lambda+2\mu\right)\varepsilon_{\varphi\varphi}+\lambda\varepsilon_{rr}, \\\end{split}\]

Pro momenty \(m_{ijk}\) jako derivaci \(\partial_{i}\tau_{jk}\) je jednodušší vyjít z triády

(93)\[\nabla\boldsymbol{\tau}=\left(\boldsymbol{e}_{r}\partial_{r}+\boldsymbol{e}_{\varphi}r^{-1}\partial_{\varphi}\right) \otimes\left[\tau_{rr}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r} +\tau_{r\varphi}\left(\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi} +\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r}\right) +\tau_{\varphi\varphi}\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi}\right].\]

Teda pomocí vztahu (46) v části Vektorová analýza, kde se přehodí první a třetí index, se dotane

(94)\[\begin{split}\boldsymbol{m}=\nabla\boldsymbol{\tau} &= \partial_{r}\tau_{rr}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r} +\partial_{r}\tau_{r\varphi}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi} +\partial_{r}\tau_{\varphi r}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r} +\partial_{r}\tau_{\varphi\varphi}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi} \\ &+ \frac{1}{r}\left(\partial_{\varphi}\tau_{rr}-\tau_{r\varphi}-\tau_{\varphi r}\right) \boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r} +\frac{1}{r}\left(\tau_{rr}-\tau_{\varphi\varphi}+\partial_{\varphi}\tau_{\varphi r}\right) \boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r} \\ &+ \frac{1}{r}\left(\tau_{rr}-\tau_{\varphi\varphi}+\partial_{\varphi}\tau_{r\varphi}\right) \boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi} +\frac{1}{r}\left(\tau_{r\varphi}+\tau_{\varphi r}+\partial_{\varphi}\tau_{\varphi\varphi}\right) \boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi},\end{split}\]

takže

(95)\[m_{rrr}=c\partial_{r}\tau_{rr},\quad m_{rr\varphi}=c\partial_{r}\tau_{r\varphi}, \quad m_{r\varphi\varphi}=c\partial_{r}\tau_{\varphi\varphi},\]
(96)\[m_{\varphi rr}=c\frac{1}{r}\left(\partial_{\varphi}\tau_{rr}-2\tau_{r\varphi}\right), \quad m_{\varphi\varphi r}=c\frac{1}{r}\left(\partial_{\varphi}\tau_{\varphi r}+\tau_{rr}-\tau_{\varphi\varphi}\right), \quad m_{\varphi\varphi\varphi}=c\frac{1}{r}\left(\partial_{\varphi}\tau_{\varphi\varphi}+2\tau_{r\varphi}\right).\]

Deformace se může zapsat pomocí operátoru nabla následovně

(97)\[\varepsilon_{ij}=\frac{1}{2}\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right).\]

Takže v kartézském souřadnicovém systému, kde \(\nabla=\boldsymbol{e}_{x}\partial_{x}+\boldsymbol{e}_{y}\partial_{y}\), platí

(98)\[\varepsilon_{xx}=\partial_{x}u_{x}, \quad\varepsilon_{xy}=\frac{1}{2}\left(\partial_{y}u_{x}+\partial_{x}u_{y}\right), \quad\varepsilon_{yy}=\partial_{x}u_{y}.\]

Derivace deformace má v kartézském souřadnicovém systému jednoduchý tvar

(99)\[\partial_{x}\varepsilon_{xx}=\partial_{xx}u_{x}, \ \partial_{x}\varepsilon_{xy}=\frac{1}{2}\left(\partial_{xy}u_{x}+\partial_{xx}u_{y}\right), \ \partial_{x}\varepsilon_{yy}=\partial_{xy}u_{y},\]
(100)\[\partial_{y}\varepsilon_{xx}=\partial_{yx}u_{x}, \ \partial_{y}\varepsilon_{xy}=\frac{1}{2}\left(\partial_{yy}u_{x}+\partial_{yx}u_{y}\right), \ \partial_{y}\varepsilon_{yy}=\partial_{yy}u_{y}\]

a Hookeův zákon má tvar

(101)\[\begin{split}\tau_{xx} &= \left(\lambda+2\mu\right)\partial_{x}u_{x}+\lambda\partial_{y}u_{y}, \\ \tau_{xy} &= \mu\left(\partial_{y}u_{x}+\partial_{x}u_{y}\right), \\ \tau_{yy} &= \left(\lambda+2\mu\right)\partial_{y}u_{y}+\lambda\partial_{x}u_{x},\end{split}\]
(102)\[\begin{split}m_{xxx} &= c\partial_{x}\left[\left(\lambda+2\mu\right)\partial_{x}u_{x}+\lambda\partial_{y}u_{y}\right], \\ m_{xxy} &= c\mu\partial_{x}\left(\partial_{y}u_{x}+\partial_{x}u_{y}\right), \\ m_{xyy} &= c\partial_{x}\left[\left(\lambda+2\mu\right)\partial_{y}u_{y}+\lambda\partial_{x}u_{x}\right], \\ m_{yxx} &= c\partial_{y}\left[\left(\lambda+2\mu\right)\partial_{x}u_{x}+\lambda\partial_{y}u_{y}\right], \\ m_{yxy} &= c\mu\partial_{y}\left(\partial_{y}u_{x}+\partial_{x}u_{y}\right), \\ m_{yyy} &= c\partial_{y}\left[\left(\lambda+2\mu\right)\partial_{y}u_{y}+\lambda\partial_{x}u_{x}\right].\end{split}\]

V polárních souřadnicích je podle (38) v části Vektorová analýza a (97)

(103)\[\varepsilon_{rr}=\partial_{r}u_{r}, \quad\varepsilon_{r\varphi}=\frac{1}{2}\left[\frac{1}{r}\left(\partial_{\varphi}u_{r}-u_{\varphi}\right) +\partial_{r}u_{\varphi}\right], \quad\varepsilon_{\varphi\varphi}=\frac{1}{r}\left(\partial_{\varphi}u_{\varphi}+u_{r}\right).\]

Svou roli hraje i gradient deformace v polárních souřadnicích, viz (94),

(104)\[\begin{split}\nabla\boldsymbol{\varepsilon} &= \partial_{r}\varepsilon_{rr}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r} +\partial_{r}\varepsilon_{r\varphi}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi} +\partial_{r}\varepsilon_{\varphi r}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r} +\partial_{r}\varepsilon_{\varphi\varphi}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi} \\ &+ \frac{1}{r}\left(\partial_{\varphi}\varepsilon_{rr}-\varepsilon_{r\varphi}-\varepsilon_{\varphi r}\right) \boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r} +\frac{1}{r}\left(\varepsilon_{rr}-\varepsilon_{\varphi\varphi}+\partial_{\varphi}\varepsilon_{\varphi r}\right) \boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r} \\ &+ \frac{1}{r}\left(\varepsilon_{rr}-\varepsilon_{\varphi\varphi}+\partial_{\varphi}\varepsilon_{r\varphi}\right) \boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi} +\frac{1}{r}\left(\varepsilon_{r\varphi}+\varepsilon_{\varphi r}+\partial_{\varphi}\varepsilon_{\varphi\varphi}\right) \boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi},\end{split}\]
(105)\[\begin{split}\tau_{rr} &= \left(\lambda+2\mu\right)\partial_{r}u_{r}+\lambda\frac{1}{r}\left(u_{r}+\partial_{\varphi}u_{\varphi}\right), \\ \tau_{r\varphi} &= \mu\left[\frac{1}{r}\left(\partial_{\varphi}u_{r}-u_{\varphi}\right)+\partial_{r}u_{\varphi}\right], \\ \tau_{\varphi\varphi} &= \left(\lambda+2\mu\right)\frac{1}{r}\left(u_{r}+\partial_{\varphi}u_{\varphi}\right) +\lambda\partial_{r}u_{r},\end{split}\]
(106)\[\begin{split}m_{rrr} &= c\partial_{r}\left[\left(\lambda+2\mu\right)\partial_{r}u_{r} +\lambda\frac{1}{r}\left(u_{r}+\partial_{\varphi}u_{\varphi}\right)\right], \\ m_{rr\varphi} &= c\mu\partial_{r}\left[\frac{1}{r}\left(\partial_{\varphi}u_{r}-u_{\varphi}\right) +\partial_{r}u_{\varphi}\right], \\ m_{r\varphi\varphi} &= c\partial_{r}\left[\left(\lambda+2\mu\right)\frac{1}{r}\left(u_{r} +\partial_{\varphi}u_{\varphi}\right)+\lambda\partial_{r}u_{r}\right], \\ m_{\varphi rr} &= c\frac{1}{r}\left[\partial_{\varphi}\left[\left(\lambda+2\mu\right)\partial_{r}u_{r} +\lambda\frac{1}{r}\left(u_{r}+\partial_{\varphi}u_{\varphi}\right)\right]\right. \\ &\left. -2\mu\left[\frac{1}{r}\left(\partial_{\varphi}u_{r}-u_{\varphi}\right)+\partial_{r}u_{\varphi}\right]\right], \\ m_{\varphi\varphi r} &= c\frac{1}{r}\mu\left[\partial_{\varphi}\left[\frac{1}{r}\left(\partial_{\varphi}u_{r}-3u_{\varphi}\right) +\partial_{r}u_{\varphi}\right]\right. \\ &\left. +2\left(\partial_{r}u_{r}-\frac{1}{r}u_{r}\right)\right], \\ m_{\varphi\varphi\varphi} &= c\frac{1}{r}\left[\partial_{\varphi}\left[\left(\lambda+2\mu\right) \frac{1}{r}\left(u_{r}+\partial_{\varphi}u_{\varphi}\right) +\lambda\partial_{r}u_{r}\right]\right. \\ &\left. +2\mu\left[\frac{1}{r}\left(\partial_{\varphi}u_{r}-u_{\varphi}\right)+\partial_{r}u_{\varphi}\right]\right].\end{split}\]

Totální napětí v kartézských souřadnicích se určí pro rovinu s normálou \(\boldsymbol{n}=\left(0,\pm1\right)\)

(107)\[\begin{split}t_{yx}\equiv P_{x} &= \pm\left(\tau_{yx}-\partial_{x}m_{xyx}-\partial_{y}m_{yyx}-\partial_{x}m_{yxx}\right), \\ t_{yy}\equiv P_{y} &= \pm\left(\tau_{yy}-\partial_{x}m_{xyy}-\partial_{y}m_{yyy}-\partial_{x}m_{yxy}\right). \\\end{split}\]

V případě polárních souřadnic je výhodnější rovnici (86) přepsat do tvaru

(108)\[\boldsymbol{P}=\boldsymbol{n}\cdot\left(\boldsymbol{\tau}-\nabla\cdot\boldsymbol{m}\right) -\overset{\boldsymbol{s}}{\nabla}\cdot\left(\boldsymbol{n}\cdot\boldsymbol{m}\right) +\left(\overset{\boldsymbol{s}}{\nabla}\cdot\boldsymbol{n}\right) \left(\boldsymbol{n}\boldsymbol{n}\colon\boldsymbol{m}\right),\]

kde

(109)\[\overset{\boldsymbol{s}}{\nabla}=\left(\boldsymbol{I}-\boldsymbol{n}\boldsymbol{n}\right)\cdot\nabla\]

je operátor povrchového gradientu, který se v případě kartézských souřadnic zapíše jako (42). Jestiže v případě polárních souřadnic

(110)\[\nabla=\boldsymbol{e}_{r}\partial_{r}+r^{-1}\boldsymbol{e}_{\varphi}\partial_{\varphi} \quad\mathrm{a}\quad\boldsymbol{n}=\boldsymbol{e}_{\varphi},\]

pak má povrchový gradient tvar

(111)\[\begin{split}\overset{\boldsymbol{s}}{\nabla} &= \boldsymbol{I}\cdot\nabla-\boldsymbol{n}\boldsymbol{n}\cdot\nabla \\ &= \boldsymbol{e}_{r}\left(\boldsymbol{e}_{r}\cdot\nabla\right) +\boldsymbol{e}_{\varphi}\left(\boldsymbol{e}_{\varphi}\cdot\nabla\right) -\boldsymbol{e}_{\varphi}\left(\boldsymbol{e}_{\varphi}\cdot\nabla\right) \\ &= \boldsymbol{e}_{r}\partial_{r}+\boldsymbol{e}_{\varphi}\frac{1}{r}\partial_{\varphi} -\boldsymbol{e}_{\varphi}\frac{1}{r}\partial_{\varphi} \\ &= \boldsymbol{e}_{r}\partial_{r}.\end{split}\]

Jednotlivé části vztahu (108), se vzetím v potaz (32) z části Vektorová analýza a nulovosti ostatních derivací, mohou se vyjádřit následovně

(112)\[\boldsymbol{n}\cdot\boldsymbol{m}=m_{\varphi rr}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r} +m_{\varphi r\varphi}\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi} +m_{\varphi\varphi r}\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r} +m_{\varphi\varphi\varphi}\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi},\]

a podle (49) z části Vektorová analýza

(113)\[\begin{split}\boldsymbol{n}\cdot\left(\nabla\cdot\boldsymbol{m}\right) &= \left(\partial_{r}m_{r\varphi r}+\frac{1}{r}m_{r\varphi r} +\frac{1}{r}m_{\varphi rr}+\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi r} -\frac{1}{r}m_{\varphi\varphi\varphi}\right)\boldsymbol{e}_{r} \\ &+ \left(\partial_{r}m_{r\varphi\varphi}+\frac{1}{r}m_{r\varphi\varphi}+\frac{1}{r}m_{\varphi r\varphi} +\frac{1}{r}m_{\varphi\varphi r}+\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi\varphi}\right)\boldsymbol{e}_{\varphi}.\end{split}\]

Dále

(114)\[\begin{split}\overset{\boldsymbol{s}}{\nabla}\cdot\left(\boldsymbol{n}\cdot\boldsymbol{m}\right) &= \partial_{r}m_{\varphi rr}\boldsymbol{e}_{r}\cdot\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r} +\partial_{r}m_{\varphi r\varphi}\boldsymbol{e}_{r}\cdot\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi} \\ &+ \partial_{r}m_{\varphi\varphi r}\boldsymbol{e}_{r}\cdot\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r} +\partial_{r}m_{\varphi\varphi\varphi}\boldsymbol{e}_{r}\cdot\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi} \\ &= \partial_{r}m_{\varphi rr}\boldsymbol{e}_{r}+\partial_{r}m_{\varphi r\varphi}\boldsymbol{e}_{\varphi},\end{split}\]

kde

(115)\[\overset{\boldsymbol{s}}{\nabla}\cdot\boldsymbol{n}=\boldsymbol{e}_{r}\cdot\partial_{r}\boldsymbol{e}_{\varphi}=0.\]

Potom pro (108) platí

(116)\[\begin{split}\boldsymbol{P} &= \boldsymbol{n}\cdot\left(\boldsymbol{\tau}-\nabla\cdot\boldsymbol{m}\right) -\overset{\boldsymbol{s}}{\nabla}\cdot\left(\boldsymbol{n}\cdot\boldsymbol{m}\right), \\ &= \tau_{rr}\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{r} +\tau_{r\varphi}\left(\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{r}\otimes\boldsymbol{e}_{\varphi} +\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{r}\right) +\tau_{\varphi\varphi}\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{\varphi}\otimes\boldsymbol{e}_{\varphi} \\ &- \left(\partial_{r}m_{r\varphi r}+\frac{1}{r}m_{r\varphi r}+\frac{1}{r}m_{\varphi rr} +\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi r}-\frac{1}{r}m_{\varphi\varphi\varphi}\right)\boldsymbol{e}_{r} \\ &- \left(\partial_{r}m_{r\varphi\varphi}+\frac{1}{r}m_{r\varphi\varphi}+\frac{1}{r}m_{\varphi r\varphi} +\frac{1}{r}m_{\varphi\varphi r} +\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi\varphi}\right)\boldsymbol{e}_{\varphi} \\ &- \partial_{r}m_{\varphi rr}\boldsymbol{e}_{r}+\partial_{r}m_{\varphi r\varphi}\boldsymbol{e}_{\varphi} \\ &= \left(\tau_{r\varphi}-\partial_{r}m_{r\varphi r}-\frac{1}{r}m_{r\varphi r}-\frac{1}{r}m_{\varphi rr} -\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi r}+\frac{1}{r}m_{\varphi\varphi\varphi} -\partial_{r}m_{\varphi rr}\right)\boldsymbol{e}_{r} \\ &+ \left(\tau_{\varphi\varphi}-\partial_{r}m_{r\varphi\varphi}-\frac{1}{r}m_{r\varphi\varphi} -\frac{1}{r}m_{\varphi r\varphi}-\frac{1}{r}m_{\varphi\varphi r} -\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi\varphi} +\partial_{r}m_{\varphi r\varphi}\right)\boldsymbol{e}_{\varphi}.\end{split}\]

Po rozepsání do složek

(117)\[t_{\varphi r}\equiv P_{r}=\tau_{r\varphi}-\partial_{r}m_{r\varphi r}-\frac{1}{r}m_{r\varphi r} -\frac{1}{r}m_{\varphi rr}-\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi r} +\frac{1}{r}m_{\varphi\varphi\varphi}-\partial_{r}m_{\varphi rr}\]

a

(118)\[\begin{split}t_{\varphi\varphi} &\equiv P_{\varphi}=\tau_{\varphi\varphi}-\partial_{r}m_{r\varphi\varphi} -\frac{1}{r}m_{r\varphi\varphi}-\frac{1}{r}m_{\varphi r\varphi}-\frac{1}{r}m_{\varphi\varphi r} -\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi\varphi}+\partial_{r}m_{\varphi r\varphi} \\ &= \tau_{\varphi\varphi}-\partial_{r}m_{r\varphi\varphi}-\frac{1}{r}m_{r\varphi\varphi}-\frac{2}{r}m_{\varphi r\varphi} -\frac{1}{r}\partial_{\varphi}m_{\varphi\varphi\varphi}+\partial_{r}m_{\varphi r\varphi}.\end{split}\]

Podobně jako pro totální napětí, také rovnice rovnováhy je výhodné přepsat do tvaru s vektorovými operátory

(119)\[\boldsymbol{\tau}-\nabla\cdot\boldsymbol{m}=0.\]

Dosazením (94) se rovnice (119) převede do tvaru

(120)\[\boldsymbol{\tau}-c\nabla\cdot\nabla\boldsymbol{\tau}=\boldsymbol{\tau}-c\nabla^{2}\boldsymbol{\tau}=0.\]

Hookeův zákon (83) lze pomocí (97) napsat ve tvaru

(121)\[\boldsymbol{\tau}=\frac{1}{2}\lambda\boldsymbol{I}\left[\boldsymbol{I}\colon\left(\boldsymbol{u}\nabla +\nabla\boldsymbol{u}\right)\right] +\mu\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right)\]

a po roznásobení výrazu v hranaté závorce

(122)\[\boldsymbol{\tau}=\lambda\left(\nabla\cdot\boldsymbol{u}\right)\boldsymbol{I} +\mu\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right).\]

Dosazením tohoto výrazu do (120) se dostane

(123)\[\begin{split}0 &= \lambda\left(\nabla\cdot\boldsymbol{u}\right)\boldsymbol{I} +\mu\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right) \\ &- c\nabla^{2}\left[\lambda\left(\nabla\cdot\boldsymbol{u}\right)\boldsymbol{I} +\mu\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right)\right]\end{split}\]

Místo Lamého konstant \(\lambda\) a \(\mu\) je lepší použít Youngův modul \(E\) a Poissonovo číslo \(\nu\),

(124)\[\lambda=\frac{E\nu}{\left(1+\nu\right)\left(1-2\nu\right)},\quad\mu=\frac{E}{2\left(1+\nu\right)}.\]

Pak se teda dostane

(125)\[\begin{split}0 &= \frac{E\nu}{\left(1+\nu\right)\left(1-2\nu\right)}\left(\nabla\cdot\boldsymbol{u}\right)\boldsymbol{I} +\frac{E}{2\left(1+\nu\right)}\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right) \\ &- c\nabla^{2}\left[\frac{E\nu}{\left(1+\nu\right)\left(1-2\nu\right)}\left(\nabla\cdot\boldsymbol{u}\right)\boldsymbol{I} +\frac{E}{2\left(1+\nu\right)}\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right)\right]\end{split}\]

Po úpravě se dotane

(126)\[\begin{split}0 &= 2\nu\left(\nabla\cdot\boldsymbol{u}\right)\boldsymbol{I} +\left(1-2\nu\right)\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right) \\ &- c\nabla^{2}\left[2\nu\left(\nabla\cdot\boldsymbol{u}\right)\boldsymbol{I} +\left(1-2\nu\right)\left(\boldsymbol{u}\nabla+\nabla\boldsymbol{u}\right)\right].\end{split}\]

Dále se skalárně rovnice vynásobí operátorem \(\nabla\),

(127)\[\begin{split}0 &= 2\nu\left(\nabla\cdot\boldsymbol{u}\right)\nabla\cdot\boldsymbol{I} +\left(1-2\nu\right)\left(\nabla\cdot\boldsymbol{u}\nabla+\nabla\cdot\nabla\boldsymbol{u}\right) \\ &- c\nabla^{2}\left[2\nu\left(\nabla\cdot\boldsymbol{u}\right)\nabla\cdot\boldsymbol{I} +\left(1-2\nu\right)\left(\nabla\cdot\boldsymbol{u}\nabla+\nabla\cdot\nabla\boldsymbol{u}\right)\right],\end{split}\]

nebo-li

(128)\[\begin{split}0 &= 2\nu\left(\nabla\cdot\boldsymbol{u}\right)\nabla +\left(1-2\nu\right)\left(\nabla\cdot\boldsymbol{u}\nabla+\nabla^{2}\boldsymbol{u}\right) \\ &- c\nabla^{2}\left[2\nu\left(\nabla\cdot\boldsymbol{u}\right)\nabla +\left(1-2\nu\right)\left(\nabla\cdot\boldsymbol{u}\nabla+\nabla^{2}\boldsymbol{u}\right)\right].\end{split}\]

Nakonec se výrazy \(2\nu\) odečtou,

(129)\[\begin{split}0 &= \nabla\cdot\boldsymbol{u}\nabla+\left(1-2\nu\right)\nabla^{2}\boldsymbol{u} \\ &- c\nabla^{2}\left(\nabla\cdot\boldsymbol{u}\nabla+\left(1-2\nu\right)\nabla^{2}\boldsymbol{u}\right)\end{split}\]

a výraz v závorce se vytkne

(130)\[\left(1-c\nabla^{2}\right)\left[\left(1-2\nu\right)\nabla^{2}\boldsymbol{u} +\nabla\left(\nabla\cdot\boldsymbol{u}\right)\right]=0.\]

V polárních souřadnicích se (130) napíše jako

(131)\[\left(1-c\nabla^{2}\right)\left[s_{r}\boldsymbol{e_{r}}+s_{\varphi}\boldsymbol{e}_{\varphi}\right]=0\]
(132)\[\begin{split}&\Rightarrow \left[1-c\left(\boldsymbol{e}_{r}\partial_{r}+\frac{1}{r}\boldsymbol{e}_{\varphi}\partial_{\varphi}\right) \cdot\left(\boldsymbol{e}_{r}\partial_{r} +\frac{1}{r}\boldsymbol{e}_{\varphi}\partial_{\varphi}\right)\right] \\ &\times \left[\left(1-2\nu\right)\left(\boldsymbol{e}_{r}\partial_{r} +\frac{1}{r}\boldsymbol{e}_{\varphi}\partial_{\varphi}\right) \cdot\left(\boldsymbol{e}_{r}\partial_{r}+\frac{1}{r}\boldsymbol{e}_{\varphi}\partial_{\varphi}\right) \left(u_{r}\boldsymbol{e}_{r}+u_{\varphi}\boldsymbol{e}_{\varphi}\right)\right. \\ &\left. +\left(\boldsymbol{e}_{r}\partial_{r}+\frac{1}{r}\boldsymbol{e}_{\varphi}\partial_{\varphi}\right) \left[\left(\boldsymbol{e}_{r}\partial_{r}+\frac{1}{r}\boldsymbol{e}_{\varphi}\partial_{\varphi}\right) \cdot\left(u_{r}\boldsymbol{e}_{r}+u_{\varphi}\boldsymbol{e}_{\varphi}\right)\right]\right]=0 \\ &\Rightarrow \left[1-c\left(\boldsymbol{e}_{r}\cdot\boldsymbol{e}_{r}\partial_{rr} +\frac{1}{r}\boldsymbol{e}_{\varphi}\cdot\partial_{\varphi}\boldsymbol{e}_{r}\partial_{r} +\frac{1}{r}\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{r}\partial_{\varphi r} +\frac{1}{r^{2}}\boldsymbol{e}_{\varphi} \cdot\partial_{\varphi}\boldsymbol{e}_{\varphi}\partial_{\varphi} +\frac{1}{r^{2}}\boldsymbol{e}_{\varphi} \cdot\boldsymbol{e}_{\varphi}\partial_{\varphi\varphi}\right)\right] \\ &\times \left[\left(1-2\nu\right)\left(\boldsymbol{e}_{r}\cdot\boldsymbol{e}_{r}\partial_{rr} +\frac{1}{r}\boldsymbol{e}_{\varphi}\cdot\partial_{\varphi}\boldsymbol{e}_{r}\partial_{r} +\frac{1}{r}\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{r}\partial_{\varphi r} \right.\right. \\ &+ \left.\frac{1}{r^{2}}\boldsymbol{e}_{\varphi}\cdot\partial_{\varphi}\boldsymbol{e}_{\varphi}\partial_{\varphi} +\frac{1}{r^{2}}\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{\varphi}\partial_{\varphi\varphi}\right) \left(u_{r}\boldsymbol{e}_{r}+u_{\varphi}\boldsymbol{e}_{\varphi}\right) \\ &+ \left(\boldsymbol{e}_{r}\partial_{r}+\frac{1}{r}\boldsymbol{e}_{\varphi}\partial_{\varphi}\right) \left[\boldsymbol{e}_{r}\cdot\boldsymbol{e}_{r}\partial_{r}u_{r}+u_{r}\boldsymbol{e}_{r}\cdot\partial_{r}\boldsymbol{e}_{r} +\boldsymbol{e}_{r}\cdot\boldsymbol{e}_{\varphi}\partial_{r}u_{\varphi} +u_{\varphi}\boldsymbol{e}_{r}\cdot\partial_{r}\boldsymbol{e}_{\varphi}\right. \\ &\left.\left. +\frac{1}{r}\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{r}\partial_{\varphi}u_{r} +\frac{1}{r}u_{r}\boldsymbol{e}_{\varphi}\cdot\partial_{\varphi}\boldsymbol{e}_{r} +\frac{1}{r}\boldsymbol{e}_{\varphi}\cdot\boldsymbol{e}_{\varphi}\partial_{\varphi}u_{\varphi} +\frac{1}{r}u_{\varphi}\boldsymbol{e}_{\varphi}\cdot\partial_{\varphi}\boldsymbol{e}_{\varphi}\right]\right]=0 \\ &\Rightarrow \left[1-c\left(\partial_{rr}+\frac{1}{r}\partial_{r}+\frac{1}{r^{2}}\partial_{\varphi\varphi}\right)\right] \left[\left(1-2\nu\right)\left(\partial_{rr}+\frac{1}{r}\partial_{r} +\frac{1}{r^{2}}\partial_{\varphi\varphi}\right) \left(u_{r}\boldsymbol{e}_{r}+u_{\varphi}\boldsymbol{e}_{\varphi}\right)\right. \\ &\left. +\left(\boldsymbol{e}_{r}\partial_{r}+\frac{1}{r}\boldsymbol{e}_{\varphi}\partial_{\varphi}\right) \left(\partial_{r}u_{r}+\frac{1}{r}u_{r}+\frac{1}{r}\partial_{\varphi}u_{\varphi}\right)\right]=0 \\ &\Rightarrow \left[1-c\left(\partial_{rr}+\frac{1}{r}\partial_{r}+\frac{1}{r^{2}}\partial_{\varphi\varphi}\right)\right] \left[\left(1-2\nu\right)\left(\boldsymbol{e}_{r}\partial_{rr}u_{r} +\boldsymbol{e}_{\varphi}\partial_{rr}u_{\varphi} +\boldsymbol{e}_{r}\frac{1}{r}\partial_{r}u_{r} +\boldsymbol{e}_{\varphi}\frac{1}{r}\partial_{r}u_{\varphi}\right.\right. \\ &\left. +\frac{1}{r^{2}}\partial_{\varphi}\left(\boldsymbol{e}_{r}\partial_{\varphi}u_{r} +u_{r}\partial_{\varphi}\boldsymbol{e}_{r} +\boldsymbol{e}_{\varphi}\partial_{\varphi}u_{\varphi} +u_{\varphi}\partial_{\varphi}\boldsymbol{e}_{\varphi}\right)\right) \\ &+ \boldsymbol{e}_{r}\left(\partial_{rr}u_{r}-\frac{1}{r^{2}}u_{r}+\frac{1}{r}\partial_{r}u_{r} -\frac{1}{r^{2}}\partial_{\varphi}u_{\varphi}+\frac{1}{r}\partial_{r\varphi}u_{\varphi}\right) \\ &\left. +\boldsymbol{e}_{\varphi}\left(\frac{1}{r}\partial_{\varphi r}u_{r}+\frac{1}{r^{2}}\partial_{\varphi}u_{r} +\frac{1}{r^{2}}\partial_{\varphi\varphi}u_{\varphi}\right)\right]=0 \\ &\Rightarrow \left[1-c\left(\partial_{rr}+\frac{1}{r}\partial_{r}+\frac{1}{r^{2}}\partial_{\varphi\varphi}\right)\right] \left[\left(1-2\nu\right)\left(\boldsymbol{e}_{r}\partial_{rr}u_{r} +\boldsymbol{e}_{\varphi}\partial_{rr}u_{\varphi}+\boldsymbol{e}_{r}\frac{1}{r}\partial_{r}u_{r} +\boldsymbol{e}_{\varphi}\frac{1}{r}\partial_{r}u_{\varphi}\right.\right. \\ &+ \frac{1}{r^{2}}\left(\boldsymbol{e}_{\varphi}\partial_{\varphi}u_{r}+\boldsymbol{e}_{r}\partial_{\varphi\varphi}u_{r} +\partial_{\varphi}u_{r}\boldsymbol{e}_{\varphi} +u_{r}\partial_{\varphi}\boldsymbol{e}_{\varphi}\right. \\ &\left.\left. -\boldsymbol{e}_{r}\partial_{\varphi}u_{\varphi}+\boldsymbol{e}_{\varphi}\partial_{\varphi\varphi}u_{\varphi} -\partial_{\varphi}u_{\varphi}\boldsymbol{e}_{r}-u_{\varphi}\partial_{\varphi}\boldsymbol{e}_{r}\right)\right) \\ &+ \boldsymbol{e}_{r}\left(\partial_{rr}u_{r}-\frac{1}{r^{2}}u_{r}+\frac{1}{r}\partial_{r}u_{r} -\frac{1}{r^{2}}\partial_{\varphi}u_{\varphi}+\frac{1}{r}\partial_{r\varphi}u_{\varphi}\right) \\ &\left. +\boldsymbol{e}_{\varphi}\left(\frac{1}{r}\partial_{\varphi r}u_{r}+\frac{1}{r^{2}}\partial_{\varphi}u_{r} +\frac{1}{r^{2}}\partial_{\varphi\varphi}u_{\varphi}\right)\right]=0 \\ &\Rightarrow \left[1-c\left(\partial_{rr}+\frac{1}{r}\partial_{r}+\frac{1}{r^{2}}\partial_{\varphi\varphi}\right)\right] \left[\boldsymbol{e}_{r}\left(\partial_{rr}u_{r}-\frac{1}{r^{2}}u_{r}+\frac{1}{r}\partial_{r}u_{r} -\frac{1}{r^{2}}\partial_{\varphi}u_{\varphi} +\frac{1}{r}\partial_{r\varphi}u_{\varphi}\right.\right. \\ &+ \left(1-2\nu\right)\partial_{rr}u_{r}+\left(1-2\nu\right)\frac{1}{r}\partial_{r}u_{r} \\ &\left. +\left(1-2\nu\right)\frac{1}{r^{2}}\partial_{\varphi\varphi}u_{r} -\left(1-2\nu\right)\frac{1}{r^{2}}\partial_{\varphi}u_{\varphi} -\left(1-2\nu\right)\frac{1}{r^{2}}\partial_{\varphi}u_{\varphi} -\left(1-2\nu\right)\frac{1}{r^{2}}u_{r}\right) \\ &+ \boldsymbol{e}_{\varphi}\left(\frac{1}{r}\partial_{\varphi r}u_{r}+\frac{1}{r^{2}}\partial_{\varphi}u_{r} +\frac{1}{r^{2}}\partial_{\varphi\varphi}u_{\varphi}+\left(1-2\nu\right) \partial_{rr}u_{\varphi}+\left(1-2\nu\right)\frac{1}{r}\partial_{r}u_{\varphi}\right. \\ &\left.\left. +\frac{1}{r^{2}}\left(1-2\nu\right)\partial_{\varphi}u_{r}+\left(1-2\nu\right) \frac{1}{r^{2}}\partial_{\varphi}u_{r}+\left(1-2\nu\right)\frac{1}{r^{2}}\partial_{\varphi\varphi}u_{\varphi} -\left(1-2\nu\right)\frac{1}{r^{2}}u_{\varphi}\right)\right]=0 \\ &\Rightarrow \left[1-c\left(\partial_{rr}+\frac{1}{r}\partial_{r}+\frac{1}{r^{2}}\partial_{\varphi\varphi}\right)\right] \left[\boldsymbol{e}_{r}\left[-\left(1-2\nu\right)\frac{1}{r}\partial_{\varphi} \left(\partial_{r}u_{\varphi}-\frac{1}{r}\partial_{\varphi}u_{r} +\frac{1}{r}u_{\varphi}\right)\right.\right. \\ &\left. +2\left(1-\nu\right)\partial_{r}\left(\partial_{r}u_{r}+\frac{1}{r}u_{r} +\frac{1}{r}\partial_{\varphi}u_{\varphi}\right)\right] \\ &\left. +\boldsymbol{e}_{\varphi}\left[2\left(1-\nu\right)\frac{1}{r}\partial_{\varphi} \left(\partial_{r}u_{r}+\frac{1}{r}u_{r}+\frac{1}{r}\partial_{\varphi}u_{\varphi}\right) +\left(1-2\nu\right)\partial_{r} \left(\partial_{r}u_{\varphi}+\frac{1}{r}u_{\varphi} -\frac{1}{r}\partial_{\varphi}u_{r}\right)\right]\right]=0,\end{split}\]

nebo-li

(133)\[\left[1-c\left(\partial_{rr}+\frac{1}{r}\partial_{r}+\frac{1}{r^{2}}\partial_{\varphi\varphi}\right)\right] \left(s_{r}\boldsymbol{e}_{r}+s_{\varphi}\boldsymbol{e}_{\varphi}\right)=0\]
(134)\[\begin{split}&\Rightarrow s_{r}\boldsymbol{e}_{r}-c\left[\partial_{rr}s_{r}\boldsymbol{e}_{r}+\frac{1}{r}\partial_{r}s_{r}\boldsymbol{e}_{r} +\frac{1}{r^{2}}\partial_{\varphi}\left(\partial_{\varphi}s_{r}\boldsymbol{e}_{r} +s_{r}\boldsymbol{e}_{\varphi}\right)\right] \\ &+ s_{\varphi}\boldsymbol{e}_{\varphi}-c\left[\partial_{rr}s_{\varphi}\boldsymbol{e}_{\varphi} +\frac{1}{r}\partial_{r}s_{\varphi}\boldsymbol{e}_{\varphi} +\frac{1}{r^{2}}\partial_{\varphi} \left(\partial_{\varphi}s_{\varphi}\boldsymbol{e}_{\varphi} -s_{\varphi}\boldsymbol{e}_{r}\right)\right]=0 \\ &\Rightarrow s_{r}\boldsymbol{e}_{r}-c\left[\partial_{rr}s_{r}\boldsymbol{e}_{r}+\frac{1}{r}\partial_{r}s_{r}\boldsymbol{e}_{r} +\frac{1}{r^{2}}\left(\partial_{\varphi\varphi}s_{r}\boldsymbol{e}_{r} +\partial_{\varphi}s_{r}\boldsymbol{e}_{\varphi} +\partial_{\varphi}s_{r}\boldsymbol{e}_{\varphi} -s_{r}\boldsymbol{e}_{r}\right)\right] \\ &+ s_{\varphi}\boldsymbol{e}_{\varphi}-c\left[\partial_{rr}s_{\varphi}\boldsymbol{e}_{\varphi} +\frac{1}{r}\partial_{r}s_{\varphi}\boldsymbol{e}_{\varphi} +\frac{1}{r^{2}}\left(\partial_{\varphi\varphi}s_{\varphi}\boldsymbol{e}_{\varphi} -\partial_{\varphi}s_{\varphi}\boldsymbol{e}_{r} -\partial_{\varphi}s_{\varphi}\boldsymbol{e}_{r} -s_{\varphi}\boldsymbol{e}_{\varphi}\right)\right]=0.\end{split}\]

Takže nakonec se dostanou dvě rovnice ve směru \(\boldsymbol{e}_{r}\) a \(\boldsymbol{e}_{\varphi}\),

(135)\[s_{r}-c\left(\nabla^{2}s_{r}-\frac{1}{r^{2}}s_{r}-2\frac{1}{r^{2}}\partial_{\varphi}s_{\varphi}\right)=0\]

a

(136)\[s_{\varphi}-c\left(\nabla^{2}s_{\varphi}-\frac{1}{r^{2}}s_{\varphi}+2\frac{1}{r^{2}}\partial_{\varphi}s_{r}\right)=0,\]

kde

(137)\[s_{r}=2\left(1-\nu\right)\partial_{r}\left(\partial_{r}u_{r}+\frac{1}{r}u_{r}+\frac{1}{r}\partial_{\varphi}u_{\varphi}\right) -\left(1-2\nu\right)\frac{1}{r}\partial_{\varphi} \left(\partial_{r}u_{\varphi}-\frac{1}{r}\partial_{\varphi}u_{r}+\frac{1}{r}u_{\varphi}\right),\]
(138)\[s_{\varphi}=\left(1-2\nu\right)\partial_{r}\left(\partial_{r}u_{\varphi}+\frac{1}{r}u_{\varphi} -\frac{1}{r}\partial_{\varphi}u_{r}\right) +2\left(1-\nu\right)\frac{1}{r}\partial_{\varphi}\left(\partial_{r}u_{r} +\frac{1}{r}u_{r}+\frac{1}{r}\partial_{\varphi}u_{\varphi}\right).\]

Obě rovnice (135) a (136) při \(c\rightarrow0\) přejdou k Navier-Cauchy rovnicím z klasické pružnosti.

Literatura

Rovnice rovnováhy kubického materiálu v kartézských souřadnicích

Pro složky tenzoru napětí \(\boldsymbol{\tau}\) kubického materiálu platí

(139)\[\begin{split}\begin{equation} \begin{split} \tau_{xx} =& c_{11}\varepsilon_{xx} + c_{12}\varepsilon_{yy}, \\ \tau_{xy} =& 2c_{44}\varepsilon_{xy}, \\ \tau_{yy} =& c_{12}\varepsilon_{xx}+c_{11}\varepsilon_{yy}, \\ \end{split} \end{equation}\end{split}\]

kde

(140)\[\varepsilon_{xx}=\partial_xu_x,\quad \varepsilon_{xy}=\frac{1}{2}\left( \partial_xu_y+\partial_yu_x \right),\quad \varepsilon_{yy}=\partial_yu_y.\]

Pro složky divergence tenzoru napětí \(\nabla\cdot\boldsymbol{\tau}\) pak platí

(141)\[\begin{split}\begin{equation} \begin{split} s_x =& \big(\nabla\cdot\boldsymbol{\tau}\big)_x = \partial_x\tau_{xx}+\partial_y\tau_{xy} \\ =& \partial_x\left( c_{11}\varepsilon_{xx} +c_{12}\varepsilon_{yy} \right) +2c_{44}\partial_y\varepsilon_{xy} \\ =& \partial_x\left( c_{11}\partial_xu_x +c_{12}\partial_yu_y \right) +c_{44}\partial_y\left( \partial_xu_y +\partial_yu_x \right) \\ =& c_{11}\partial_{xx}u_x+c_{44}\partial_{yy}u_x +\left( c_{12}+c_{44} \right)\partial_{xy}u_y, \end{split} \end{equation}\end{split}\]
(142)\[\begin{split}\begin{equation} \begin{split} s_y =& \big(\nabla\cdot\boldsymbol{\tau}\big)_y = \partial_x\tau_{xy}+\partial_y\tau_{yy} \\ =& 2c_{44}\partial_x\varepsilon_{xy} +\partial_y\left( c_{12}\varepsilon_{xx} +c_{11}\varepsilon_{yy} \right) \\ =& c_{44}\partial_x\left( \partial_xu_y +\partial_yu_x \right) +\partial_y\left( c_{12}\partial_xu_x +c_{11}\partial_yu_y \right) \\ =& c_{44}\partial_{xx}u_y+c_{11}\partial_{yy}u_y +\left( c_{12}+c_{44} \right)\partial_{xy}u_x, \end{split} \end{equation}\end{split}\]

Další částí rovnice rovnováhy jsou složky divergence Laplaciánu tenzoru napětí \(\nabla\cdot\nabla^2\boldsymbol\tau\), pro které platí

(143)\[\begin{split}\begin{equation} \begin{split} \left( \nabla\cdot\nabla^2\boldsymbol{\tau} \right)_x =& \partial_x\nabla^2\tau_{xx} +\partial_y\nabla^2\tau_{xy} \\ =& \nabla^2\left( \partial_x\tau_{xx} +\partial_y\tau_{xy} \right) \\ =& \nabla^2 s_x \end{split} \end{equation}\end{split}\]
(144)\[\begin{split}\begin{equation} \begin{split} \left( \nabla\cdot\nabla^2\boldsymbol{\tau} \right)_y =& \partial_x\nabla^2\tau_{xy} +\partial_y\nabla^2\tau_{yy} \\ =& \nabla^2\left( \partial_x\tau_{xy} +\partial_y\tau_{yy} \right) \\ =& \nabla^2 s_y \end{split} \end{equation}\end{split}\]

Pomocí vztahů (141), (142), (143) a (144) se rovnice rovnováhy mohou napsat ve tvaru

(145)\[\begin{split}\begin{equation} \begin{split} s_x-c\nabla^2s_x &= 0, \\ s_y-c\nabla^2s_y &= 0. \end{split} \end{equation}\end{split}\]

Rovnice rovnováhy kubického materiálu v polárních souřadnicích

Na základě transformačních vztahů pro tenzor napětí \(\tau_{rr}\), \(\tau_{r\varphi}\) a \(\tau_{\varphi\varphi}\) a inverzních transformačních vztahů pro tenzor deformace \(\varepsilon_{rr}\), \(\varepsilon_{r\varphi}\) a \(\varepsilon_{\varphi\varphi}\) v polárních souřadnicích

(146)\[\begin{split}\begin{equation} \begin{split} \tau_{rr} =& \tau_{xx}\cos^2\varphi+2\tau_{xy}\cos\varphi\sin\varphi+\tau_{yy}\sin^2\varphi, \\ \tau_{r\varphi} =& -\tau_{xx}\cos\varphi\sin\varphi+\tau_{xy}\big(\cos^2\varphi-\sin^2\varphi\big) +\tau_{yy}\cos\varphi\sin\varphi, \\ \tau_{r\varphi} =& \tau_{xx}\sin^2\varphi-2\tau_{xy}\cos\varphi\sin\varphi+\tau_{yy}\cos^2\varphi, \end{split} \end{equation}\end{split}\]
(147)\[\begin{split}\begin{equation} \begin{split} \varepsilon_{xx} =& \varepsilon_{rr}\cos^2\varphi-2\varepsilon_{r\varphi}\cos\varphi\sin\varphi +\varepsilon_{\varphi\varphi}\sin^2\varphi, \\ \varepsilon_{xy} =& \varepsilon_{rr}\cos\varphi\sin\varphi+\varepsilon_{r\varphi}\big(\cos^2\varphi-\sin^2\varphi\big) -\varepsilon_{\varphi\varphi}\cos\varphi\sin\varphi, \\ \varepsilon_{xy} =& \varepsilon_{rr}\sin^2\varphi+2\varepsilon_{r\varphi}\cos\varphi\sin\varphi +\varepsilon_{\varphi\varphi}\cos^2\varphi, \end{split} \end{equation}\end{split}\]

a Hookeova zákona (139) pro složky tenzoru napětí \(\tau_{rr}\), \(\tau_{r\varphi}\) a \(\tau_{\varphi\varphi}\) v kubickém materiálu platí

(148)\[\begin{split}\begin{equation} \begin{split} \tau_{rr}=& \varepsilon_{rr}\big[ c_{11}\sin^4(\varphi)+c_{11}\cos^4(\varphi) \\ & +2c_{12}\sin^2(\varphi)\cos^2(\varphi) \\ & +4c_{44}\sin^2(\varphi)\cos^2(\varphi) \big] \\ & +\varepsilon_{r\varphi}\big[ 2c_{11}\sin^3(\varphi)\cos(\varphi)-2c_{11}\sin(\varphi)\cos^3(\varphi) \\ & -2c_{12}\sin^3(\varphi)\cos(\varphi)+2c_{12}\sin(\varphi)\cos^3(\varphi) \\ & -4c_{44}\sin^3(\varphi)\cos(\varphi)+4c_{44}\sin(\varphi)\cos^3(\varphi) \big] \\ & +\varepsilon_{\varphi\varphi}\big[ 2c_{11}\sin^2(\varphi)\cos^2(\varphi) \\ & +c_{12}\sin^4(\varphi)+c_{12}\cos^4(\varphi) \\ & -4c_{44}\sin^2(\varphi)\cos^2(\varphi) \big], \end{split} \end{equation}\end{split}\]
(149)\[\begin{split}\begin{equation} \begin{split} \tau_{r\varphi}=& \varepsilon_{rr}\big[ c_{11}\sin^3(\varphi)\cos(\varphi) -c_{11}\sin(\varphi)\cos^3(\varphi) \\ & -c_{12}\sin^3(\varphi)\cos(\varphi) +c_{12}\sin(\varphi)\cos^3(\varphi) \\ & -2c_{44}\sin^3(\varphi)\cos(\varphi) +2c_{44}\sin(\varphi)\cos^3(\varphi) \big] \\ &+\varepsilon_{r\varphi}\big[ 4c_{11}\sin^2(\varphi)\cos^2(\varphi) -4c_{12}\sin^2(\varphi)\cos^2(\varphi) \\ & +2c_{44}\sin^4(\varphi) -4c_{44}\sin^2(\varphi)\cos^2(\varphi) +2c_{44}\cos^4(\varphi)] \big] \\ &+\varepsilon_{\varphi\varphi}\big[ -c_{11}\sin^3\varphi\cos(\varphi) +c_{11}\sin(\varphi)\cos^3(\varphi) \\ & +c_{12}\sin^3(\varphi)\cos(\varphi) -c_{12}\sin(\varphi)\cos^3(\varphi) \\ & +2c_{44}\sin^3(\varphi)\cos(\varphi) -2c_{44}\sin(\varphi)\cos^3(\varphi) \big], \end{split} \end{equation}\end{split}\]
(150)\[\begin{split}\begin{equation} \begin{split} \tau_{\varphi\varphi}=& \varepsilon_{rr}\big[ 2c_{11}\sin^2(\varphi)\cos^2(\varphi) \\ & +c_{12}\sin^4(\varphi)+c_{12}\cos^4(\varphi) \\ & -4c_{44}\sin^2(\varphi)\cos^2(\varphi) \big] \\ & +\varepsilon_{r\varphi}\big[ -2c_{11}\sin^3(\varphi)\cos(\varphi) +2c_{11}\sin(\varphi)\cos^3(\varphi) \\ & +2c_{12}\sin^3(\varphi)\cos(\varphi) -2c_{12}\sin(\varphi)\cos^3(\varphi) \\ & +4c_{44}\sin^3(\varphi)\cos(\varphi) -4c_{44}\sin(\varphi)\cos^3(\varphi) \big] \\ & +\varepsilon_{\varphi\varphi}\big[ c_{11}\sin^4(\varphi)+c_{11}\cos^4(\varphi) \\ & +2c_{12}\sin^2(\varphi)\cos^2(\varphi) +4c_{44}\sin^2(\varphi)cos^2(\varphi) \big], \end{split} \end{equation}\end{split}\]

kde

(151)\[\begin{split}\begin{equation} \begin{split} & \varepsilon_{rr}=\partial_ru_r \\ & \varepsilon_{r\varphi}=\frac{1}{2}\left[ \frac{1}{r}\left( \partial_\varphi u_r-u_\varphi \right)+\partial_ru_\varphi \right] \\ & \varepsilon_{\varphi\varphi}=\frac{1}{r}\left( \partial_\varphi u_\varphi+u_r \right). \end{split} \end{equation}\end{split}\]

Vztahy (148)-(150) se mohou upravit do tvaru

(152)\[\begin{split}\begin{equation} \begin{split} \tau_{rr} =& c_{11}\varepsilon_{rr}+c_{12}\varepsilon_{\varphi\varphi} -\frac{1}{2}c_a\big(\varepsilon_{rr}-\varepsilon_{\varphi\varphi}\big) -c_b\varepsilon_{r\varphi}, \\ \tau_{r\varphi} =& 2c_{44}\varepsilon_{r\varphi} -\frac{1}{2}c_b\big(\varepsilon_{rr}-\varepsilon_{\varphi\varphi}\big) +c_a\varepsilon_{r\varphi}, \\ \tau_{\varphi\varphi} =& c_{12}\varepsilon_{rr}+c_{11}\varepsilon_{\varphi\varphi} +\frac{1}{2}c_a\big(\varepsilon_{rr}-\varepsilon_{\varphi\varphi}\big) +c_b\varepsilon_{r\varphi}, \end{split} \end{equation}\end{split}\]

kde

(153)\[\begin{split}\begin{equation} \begin{split} c_a =& \big(c_{11}-c_{12}-2c_{44}\big)\sin^22\varphi, \\ c_b =& \big(c_{11}-c_{12}-2c_{44}\big)\cos2\varphi\sin2\varphi. \end{split} \end{equation}\end{split}\]

Dále se budou hodit derivace vztahů (153)

(154)\[\begin{split}\begin{equation} \begin{split} c_a^\prime =& \big(c_{11}-c_{12}-2c_{44}\big)4\cos2\varphi\sin2\varphi=4c_b \\ c_b^\prime =& \big(c_{11}-c_{12}-2c_{44}\big)\big(2\cos^22\varphi-2\sin^22\varphi\big) \\ =& \big(c_{11}-c_{12}-2c_{44}\big)2\big(1-2\sin^22\varphi\big) \\ =& 2\big(c_{11}-c_{12}-2c_{44}\big)-2c_a. \end{split} \end{equation}\end{split}\]

Pro složky divergence tenzoru napětí \(\nabla\cdot\boldsymbol{\tau}\) platí

(155)\[\begin{split}\begin{equation} \begin{split} \big(\nabla\cdot\boldsymbol{\tau}\big)_r =& \partial_r\tau_{rr}+\frac{1}{r}\tau_{rr} -\frac{1}{r}\tau_{\varphi\varphi}+\frac{1}{r}\partial_\varphi\tau_{r\varphi} \\ =& \partial_r\left( c_{rr}^{rr}\varepsilon_{rr} +c_{rr}^{r\varphi}\varepsilon_{r\varphi} +c_{rr}^{\varphi\varphi}\varepsilon_{\varphi\varphi} \right) \\ & +\frac{1}{r}\left( c_{rr}^{rr}\varepsilon_{rr} +c_{rr}^{r\varphi}\varepsilon_{r\varphi} +c_{rr}^{\varphi\varphi}\varepsilon_{\varphi\varphi} \right) \\ & -\frac{1}{r}\left( c_{\varphi\varphi}^{rr}\varepsilon_{rr} +c_{\varphi\varphi}^{r\varphi}\varepsilon_{r\varphi} +c_{\varphi\varphi}^{\varphi\varphi}\varepsilon_{\varphi\varphi} \right) \\ & +\frac{1}{r}\partial_\varphi\left( c_{r\varphi}^{rr}\varepsilon_{rr} +c_{r\varphi}^{r\varphi}\varepsilon_{r\varphi} +c_{r\varphi}^{\varphi\varphi}\varepsilon_{\varphi\varphi} \right)\\ =& \frac{1}{r}\left( c_{rr}^{rr}-c_{\varphi\varphi}^{rr}+c_{r\varphi}^{rr\prime} \right)\partial_ru_r \\ & +\frac{1}{2r}\left( c_{rr}^{r\varphi}-c_{\varphi\varphi}^{r\varphi}+c_{r\varphi}^{r\varphi\prime} \right)\left( \frac{1}{r}\partial_\varphi u_r-\frac{1}{r}u_\varphi+\partial_ru_\varphi \right) \\ & +\frac{1}{r^2}\left( c_{rr}^{\varphi\varphi}-c_{\varphi\varphi}^{\varphi\varphi} +c_{r\varphi}^{\varphi\varphi\prime} \right)\left( \partial_\varphi u_\varphi+u_r \right) \\ & +c_{rr}^{rr}\partial_{rr}u_r \\ & +\frac{1}{2}c_{rr}^{r\varphi}\left( -\frac{1}{r^2}\left( \partial_\varphi u_r-u_\varphi \right) +\frac{1}{r}\partial_r\left( \partial_\varphi u_r-u_\varphi \right)+\partial_{rr}u_\varphi \right) \\ & +\frac{1}{r}c_{rr}^{\varphi\varphi}\left( -\frac{1}{r^2}\left( \partial_\varphi u_\varphi+u_r \right) +\partial_r\left( \partial_\varphi u_\varphi+u_r \right) \right) \\ & +\frac{1}{r}c_{r\varphi}^{rr}\partial_{\varphi r}u_r \\ & +\frac{1}{2r}c_{r\varphi}^{r\varphi}\left( \frac{1}{r}\partial_\varphi\left( \partial_\varphi u_r -u_\varphi \right) +\partial_{\varphi r}u_\varphi \right) \\ & +\frac{1}{r^2}c_{r\varphi}^{\varphi\varphi} \partial_\varphi\left( \partial_{\varphi}u_\varphi+u_r \right) \end{split} \end{equation}\end{split}\]
(156)\[\begin{split}\begin{equation} \begin{split} \big(\nabla\cdot\boldsymbol{\tau}\big)_\varphi =& \partial_r\tau_{r\varphi}+\frac{2}{r}\tau_{r\varphi} +\frac{1}{r}\partial_\varphi\tau_{\varphi\varphi} \\ =& \partial_r\left( c_{r\varphi}^{rr}\varepsilon_{rr} +c_{r\varphi}^{r\varphi}\varepsilon_{r\varphi} +c_{r\varphi}^{\varphi\varphi}\varepsilon_{\varphi\varphi} \right) \\ & +\frac{2}{r}\left( c_{r\varphi}^{rr}\varepsilon_{rr} +c_{r\varphi}^{r\varphi}\varepsilon_{r\varphi} +c_{r\varphi}^{\varphi\varphi}\varepsilon_{\varphi\varphi} \right) \\ & +\frac{1}{r}\partial_\varphi\left( c_{\varphi\varphi}^{rr}\varepsilon_{rr} +c_{\varphi\varphi}^{r\varphi}\varepsilon_{r\varphi} +c_{\varphi\varphi}^{\varphi\varphi}\varepsilon_{\varphi\varphi} \right) \\ =& \frac{1}{r}\left( 2c_{r\varphi}^{rr}+c_{\varphi\varphi}^{rr\prime} \right)\partial_ru_r \\ & +\frac{1}{2r}\left( 2c_{r\varphi}^{r\varphi}+c_{\varphi\varphi}^{r\varphi\prime} \right)\left( \frac{1}{r}\partial_\varphi u_r-\frac{1}{r}u_\varphi+\partial_ru_\varphi \right) \\ & +\frac{1}{r^2}\left( 2c_{r\varphi}^{\varphi\varphi} +c_{\varphi\varphi}^{\varphi\varphi\prime} \right)\left( \partial_\varphi u_\varphi+u_r \right) \\ & +c_{r\varphi}^{rr}\partial_{rr}u_r \\ & +\frac{1}{2}c_{r\varphi}^{r\varphi}\left( -\frac{1}{r^2}\left( \partial_\varphi u_r-u_\varphi \right) +\frac{1}{r}\partial_r\left( \partial_\varphi u_r-u_\varphi \right)+\partial_{rr}u_\varphi \right) \\ & +\frac{1}{r}c_{r\varphi}^{\varphi\varphi}\left( -\frac{1}{r^2}\left( \partial_\varphi u_\varphi+u_r \right) +\partial_r\left( \partial_\varphi u_\varphi+u_r \right) \right) \\ & +\frac{1}{r}c_{\varphi\varphi}^{rr}\partial_{\varphi r}u_r \\ & +\frac{1}{2r}c_{\varphi\varphi}^{r\varphi}\left( \frac{1}{r}\partial_\varphi\left( \partial_\varphi u_r -u_\varphi \right) +\partial_{\varphi r}u_\varphi \right) \\ & +\frac{1}{r^2}c_{\varphi\varphi}^{\varphi\varphi} \partial_\varphi\left( \partial_{\varphi}u_\varphi+u_r \right) \end{split} \end{equation}\end{split}\]

V dalším se budou potřebovat následující pomocné výrazy. Jestliže \(f(r,\varphi)\) je skalární funkce, pak platí

(157)\[\nabla^2f=\partial_{rr}f+\frac{1}{r}\partial_rf+\frac{1}{r^2}\partial_{\varphi\varphi}f\]
(158)\[\begin{split}\begin{equation} \begin{split} \nabla^2\left( \partial_rf \right) =& \frac{1}{r}\partial_{rr}f +\partial_{rrr}f +\frac{1}{r^2}\partial_{\varphi\varphi r}f \\ \partial_r\left( \nabla^2f \right) =& -\frac{1}{r^2}\partial_rf +\partial_{rrr}f -\frac{2}{r^3}\partial_{\varphi\varphi}f +\frac{1}{r^2}\partial_{\varphi\varphi r}f +\frac{1}{r}\partial_{rr}f \\ =& \nabla^2\left( \partial_rf \right) -\frac{1}{r^2}\partial_rf -\frac{2}{r^3}\partial_{\varphi\varphi}f \end{split} \end{equation}\end{split}\]
(159)\[\begin{split}\begin{equation} \begin{split} \nabla^2\left( \frac{1}{r}\partial_\varphi f \right) =& \frac{1}{r}\partial_r\left( \frac{1}{r}\partial_\varphi f \right) +\partial_{rr}\left( \frac{1}{r}\partial_\varphi f \right) +\frac{1}{r^2}\partial_{\varphi\varphi}\left( \frac{1}{r}\partial_\varphi f \right) \\ =& -\frac{1}{r^3}\partial_\varphi f +\frac{1}{r^2}\partial_{\varphi r}f +\frac{2}{r^3}\partial_\varphi f -\frac{1}{r^2}\partial_{\varphi r}f \\ & -\frac{1}{r^2}\partial_{\varphi r}f +\frac{1}{r}\partial_{\varphi rr}f +\frac{1}{r^3}\partial_{\varphi\varphi\varphi}f \\ =& \frac{1}{r^3}\partial_\varphi f -\frac{1}{r^2}\partial_{\varphi r}f +\frac{1}{r}\partial_{\varphi rr}f +\frac{1}{r^3}\partial_{\varphi\varphi\varphi}f \\ \frac{1}{r}\partial_\varphi\left( \nabla^2f \right) =& \frac{1}{r^2}\partial_{r\varphi}f +\frac{1}{r}\partial_{rr\varphi} +\frac{1}{r^3}\partial_{\varphi\varphi\varphi}f \\ =& \nabla^2\left( \frac{1}{r}\partial_\varphi f \right) -\frac{1}{r^3}\partial_\varphi f +\frac{2}{r^2}\partial_{\varphi r}f \end{split} \end{equation}\end{split}\]
(160)\[\begin{split}\begin{equation} \begin{split} \nabla^2\left( \frac{1}{r}f \right) =& \frac{1}{r}\partial_r\left( \frac{1}{r}f \right) +\partial_{rr}\left( \frac{1}{r}f \right) +\frac{1}{r^2}\partial_{\varphi\varphi}\left( \frac{1}{r}f \right) \\ =& -\frac{1}{r^3}f +\frac{1}{r^2}\partial_rf +\frac{2}{r^3}f -\frac{1}{r^2}\partial_rf \\ & -\frac{1}{r^2}\partial_rf +\frac{1}{r}\partial_{rr}f +\frac{1}{r^3}\partial_{\varphi\varphi}f \\ =& \frac{1}{r^3}f -\frac{1}{r^2}\partial_rf +\frac{1}{r}\partial_{rr}f +\frac{1}{r^3}\partial_{\varphi\varphi}f \\ \frac{1}{r}\partial_\varphi\left( \nabla^2f \right) =& \frac{1}{r^2}\partial_rf +\frac{1}{r}\partial_{rr}f +\frac{1}{r^3}\partial_{\varphi\varphi}f \\ =& \nabla^2\left( \frac{1}{r}f \right) +\frac{2}{r^2}\partial_rf-\frac{1}{r^3}f \end{split} \end{equation}\end{split}\]

Pomocí vždy druhého vztahu v (158)-(160) pro složky divergence Laplaciánu tenzoru napětí \(\nabla\cdot\nabla^2\boldsymbol\tau\) pak platí

(161)\[\begin{split}\begin{equation} \begin{split} \left( \nabla\cdot\nabla^2\boldsymbol{\tau} \right)_r =& \partial_r\nabla^2\tau_{rr}+\frac{1}{r}\nabla^2\tau_{rr} -\frac{1}{r}\nabla^2\tau_{\varphi\varphi}+\frac{1}{r}\partial_\varphi\nabla^2\tau_{r\varphi} \\ =& \nabla^2\left( \partial_r\tau_{rr} +\frac{1}{r}\tau_{rr} -\frac{1}{r}\tau_{\varphi\varphi} +\frac{1}{r}\partial_\varphi\tau_{r\varphi} \right) \\ & -\frac{1}{r^2}\partial_r\tau_{rr} -\frac{2}{r^3}\partial_{\varphi\varphi}\tau_{rr} +\frac{2}{r^2}\partial_r\tau_{rr} -\frac{1}{r^3}\tau_{rr} \\ & -\frac{2}{r^2}\partial_r\tau_{\varphi\varphi} +\frac{1}{r^3}\tau_{\varphi\varphi} +\frac{2}{r^2}\partial_{\varphi r}\tau_{r\varphi} -\frac{1}{r^3}\partial_\varphi\tau_{r\varphi} \\ =& \nabla^2\left( \partial_r\tau_{rr} +\frac{1}{r}\tau_{rr} -\frac{1}{r}\tau_{\varphi\varphi} +\frac{1}{r}\partial_\varphi\tau_{r\varphi} \right) \\ & -\frac{1}{r^2}\left( \partial_r\tau_{rr} +\frac{1}{r}\tau_{rr} -\frac{1}{r}\tau_{\varphi\varphi} +\frac{1}{r}\partial_\varphi\tau_{r\varphi} \right) \\ & +\frac{2}{r^2}\partial_r\left( \tau_{rr} -\tau_{\varphi\varphi} \right) +\frac{2}{r^2}\partial_\varphi\left( \partial_r\tau_{r\varphi} -\frac{1}{r}\partial_\varphi\tau_{rr} \right) \end{split} \end{equation}\end{split}\]
(162)\[\begin{split}\begin{equation} \begin{split} \left( \nabla\cdot\nabla^2\boldsymbol{\tau} \right)_\varphi =& \partial_r\nabla^2\tau_{r\varphi} +\frac{2}{r}\nabla^2\tau_{r\varphi} +\frac{1}{r}\partial_\varphi\nabla^2\tau_{\varphi\varphi} \\ =& \nabla^2\left( \partial_r\tau_{r\varphi} +\frac{2}{r}\tau_{r\varphi} +\frac{1}{r}\partial_\varphi\tau_{\varphi\varphi} \right) \\ & -\frac{1}{r^2}\partial_r\tau_{r\varphi} -\frac{2}{r^3}\partial_{\varphi\varphi}\tau_{r\varphi} +\frac{4}{r^2}\partial_r\tau_{r\varphi} \\ & -\frac{2}{r^3}\tau_{r\varphi} +\frac{2}{r^2}\partial_{\varphi r}\tau_{\varphi\varphi} -\frac{1}{r^3}\partial_\varphi\tau_{\varphi\varphi} \\ =& \nabla^2\left( \partial_r\tau_{r\varphi} +\frac{2}{r}\tau_{r\varphi} +\frac{1}{r}\partial_\varphi\tau_{\varphi\varphi} \right) \\ & -\frac{1}{r^2}\left( \partial_r\tau_{r\varphi} +\frac{2}{r}\tau_{r\varphi} +\frac{1}{r}\partial_\varphi\tau_{\varphi\varphi} \right) \\ & -\frac{2}{r^2}\partial_\varphi\left( \frac{1}{r}\partial_\varphi\tau_{r\varphi} +\partial_r\tau_{\varphi\varphi} \right) -\frac{2}{r^3}\tau_{r\varphi} \end{split} \end{equation}\end{split}\]

Označením vztahů (155) a (156) na \(s_r\) a \(s_\varphi\) a s pomocí vztahů (148)-(150) a (1) se rovnice rovnováhy mohou napsat ve tvaru

(163)\[\begin{split}\begin{equation} \begin{split} 0 =& s_r-c\left( \nabla^2s_r -\frac{1}{r^2}s_r \right) \\ & -\frac{2}{r^2}c\partial_r\left( \left( c_{rr}^{rr}-c_{\varphi\varphi}^{rr} \right)\left[ \partial_ru_r -\frac{1}{r}\left( \partial_\varphi u_\varphi+u_r \right) \right] +c_{rr}^{r\varphi}\left[ \frac{1}{r}\left( \partial_\varphi u_r-u_\varphi \right)+\partial_ru_\varphi \right] \right) \\ & -\frac{2}{r^2}c\partial_{\varphi r}\left( c_{r\varphi}^{rr}\left[ \partial_ru_r -\frac{1}{r}\left( \partial_\varphi u_\varphi+u_r \right) \right] +c_{r\varphi}^{r\varphi} \frac{1}{2}\left[ \frac{1}{r}\left( \partial_\varphi u_r-u_\varphi \right)+\partial_ru_\varphi \right] \right) \\ & +\frac{2}{r^3}c\partial_{\varphi\varphi}\left( c_{rr}^{rr}\partial_ru_r +c_{rr}^{r\varphi} \frac{1}{2}\left[ \frac{1}{r}\left( \partial_\varphi u_r-u_\varphi \right)+\partial_ru_\varphi \right] -c_{rr}^{\varphi\varphi}\frac{1}{r} \left( \partial_\varphi u_\varphi+u_r \right) \right) \end{split} \end{equation}\end{split}\]
(164)\[\begin{split}\begin{equation} \begin{split} 0 =& s_\varphi-c\left( \nabla^2s_\varphi -\frac{1}{r^2}s_\varphi \right) \\ & +\frac{2}{r^3}c\left( c_{r\varphi}^{rr}\left[ \partial_ru_r -\frac{1}{r}\left( \partial_\varphi u_\varphi+u_r \right) \right] +c_{r\varphi}^{r\varphi}\left[ \frac{1}{r}\left( \partial_\varphi u_r-u_\varphi \right)+\partial_ru_\varphi \right] \right) \\ & +\frac{2}{r^3}c\partial_{\varphi\varphi}\left( c_{r\varphi}^{rr}\left[ \partial_ru_r -\frac{1}{r}\left( \partial_\varphi u_\varphi+u_r \right) \right] +c_{r\varphi}^{r\varphi} \frac{1}{2}\left[ \frac{1}{r}\left( \partial_\varphi u_r-u_\varphi \right)+\partial_ru_\varphi \right] \right) \\ & +\frac{2}{r^2}c\partial_{\varphi r}\left( c_{\varphi\varphi}^{rr}\partial_ru_r +c_{\varphi\varphi}^{r\varphi} \frac{1}{2}\left[ \frac{1}{r}\left( \partial_\varphi u_r-u_\varphi \right)+\partial_ru_\varphi \right] -c_{\varphi\varphi}^{\varphi\varphi}\frac{1}{r} \left( \partial_\varphi u_\varphi+u_r \right) \right) \end{split} \end{equation}\end{split}\]